
Converting LATEX .sty Style Files to

LATEX2HTML .perl Style Files

Nicola Talbot

Friday 10th June, 2005

Contents

1 Introduction 1

2 The LATEX2HTML Process 2

3 Writing Subroutines to Translate LATEX Commands 2
3.1 Commands without an argument 2
3.2 Commands with arguments . 3
3.3 Optional arguments . 6

4 Writing Subroutines to Translate LATEX Environments 7
4.1 Environments with an argument 8

5 Counters 9

6 Defining Package Options 10

7 Reading Other Files 11

Subroutines and Variables 13

1 Introduction

LATEX2HTML is a Perl script that translates LATEX files into HTML. If the LATEX
source code loads packages via \usepackage, LATEX2HTML will search for a file
of the same name, but with a .perl extension, instead of a .sty extension.
This means that if you write a LATEX package, and you want LATEX2HTML to
understand it, you need to convert your LATEX code into a Perl script. This
requires an understanding of Perl, and an understanding of the inner workings
of LATEX2HTML (and, of course, an understanding of LATEX and HTML).

If you don’t know any Perl, you’ll need to learn before proceeding further.
If you use Unix or Linux, try man perl, better still, try reading “Programming
Perl”[2]. If you don’t know any HTML, try “HTML: The Definitive Guide”[1].

Note: there are many different programming styles, particularly for Perl.
Some people like to optimize the code at the expense of legibility, whilst others
may prefer to use slower code that’s easier to understand. Since this is a tutorial

1

I will tend to opt for legibility, you can then translate this into obfuscated Perl
if that is your desire.

2 The LATEX2HTML Process

LATEX2HTML parses the document in a different manner to LATEX, and this is
something you need to be wary about. The &translate subroutine splits up
the input into corresponding segments (if -split is given a non zero value),
and these segments are then translated. Therefore, if you want to define a
command that starts a new section type (e.g. \makeglossary), LATEX2HTML
won’t translate the command, until after the document has been split, at which
point it’s too late to split it into a new segment.

The translator replaces all braces with marks containing unique identifiers, to
make it easier to match opening braces with their corresponding closing braces.
For example, consider the following code:

Some \textbf{bold \textit{italic}} text.

This will be translated into:

Some \textbf<#6#>bold <I>italic</I><#6#> text.

The number inside the <#n#> sequence, 6 in the above example, is the unique
identifier for that set of braces. Note also that commands are translated inside
out, so \textit has been translated before \textbf. The maximum number of
identifiers is given by $global{’max id’}, so if you want to add a new set of
braces, you will need to do something like:

$id = ++$global{’max_id’};
$_ = "${OP}${id}${CP}Some text${OP}${id}${CP}";

where $OP is a predefined variable with the value <# and $CP is a predefined
variable with the value #>.

3 Writing Subroutines to Translate LATEX Com-
mands

For every command \cmdname that is encountered, LATEX2HTML will use the
subroutine &do cmd cmdname, if it exists1. The remainder of the entire segment
will be passed to this subroutine as a single string, and the subroutine must
return the remainder of this string when it’s done.

3.1 Commands without an argument

The easiest way to explain something is via example, so let’s try creating a very
simple package. Suppose you want a package called, say, mydate.sty which
redefines the command \today so that the date is formatted in the form year -
month-day, e.g. 2005-6-30. The LATEX code will look something like:

1and of course, if the command hasn’t been specified as one to pass to the image file, such
as the maths commands

2

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mydate}

\renewcommand{\today}{\number\year-\number\month-\number\day}

\endinput

Since the package is called mydate.sty, the Perl file needs to be called mydate.perl,
and should look something like:

#!/usr/bin/perl

sub do_cmd_today{
local($_) = @_;
local($sec,$min,$hr,$day,$month,$year) = localtime(time);
$year += 1900;
$month++;

"$year-$month-$day" . $_;
}

1;

Things to note: the last line in the file must always be 1; and the first line
may vary depending on your system. Since the command \today does not
take any arguments, the subroutine do_cmd_today does not need to read any
information in from its input string, however, it must append this string to the
text generated by the command, and return it. In the above example, this is
done by string concatenation:

"$year-$month-$day" . $_;

but can also be done using the join function:

join(’’, "$year-$month-$day", $_);

or even:

join(’-’, $year,$month,$day) . $_;

If you do not do this, you will lose the rest of the text in that segment.

3.2 Commands with arguments

The previous example did not have any arguments, so let’s try one with an
argument. The mydate package described above is now going to be modified
so that it defines the command \monthname which takes one argument—the
number of the current month (from 1 to 12.) The command \today will be
modified so that it uses the month name instead of a number. The LATEX code
in mydate.sty now looks like:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mydate}

3

\newcommand{\monthname}[1]{%
\ifcase#1
\or January%
\or February%
\or March%
\or April%
\or May%
\or June%
\or July%
\or August%
\or September%
\or October%
\or November%
\or December%
\fi}

\renewcommand{\today}{%
\number\year-\monthname{\month}-\number\day}

\endinput

LATEX2HTML defines the array @Month which contains the month names in the
currently defined language, so the &do cmd monthname subroutine can use this,
but first it needs to determine the month number which is passed as the argu-
ment. Recall from section 2 that braces are replaced by markups with unique
identifiers in the form OPnCP. This means that you need to search for these
identifiers at the start of the string passed to the &do cmd monthname subrou-
tine. Rather than having to remember the form of these identifiers, you can use
the variable $next pair pr rx which provides the correct regular expression,
where $1 will contain the unique identifier, and $2 will contain the text found
inside the set of braces corresponding to that identifier.

For example, suppose your LATEX code looked something like:

\documentclass[a4paper]{article}

\usepackage{mydate}

\begin{document}
\monthname{1} is a very chilly month
in Britain.
\end{document}

then the argument passed to &do cmd monthname will be the string

<#4#>1<#4#> is a very chilly month
in Britain.

The Perl code

s/$next_pair_pr_rx/$month=$2;’’/eo;

will set $month equal to $2, which in this case is simply 1. The value of the
identifier in this instance is not necessary, but if you wanted to know it for some

4

reason, you can add $id=$1. Note that if a match is found, the empty string ’’
will be substituted, which means the substring <#4#>1<#4#> will be removed
from $.

It is possible that the user may have omitted the braces around the argument
to the command (e.g. \monthname 1), in which case you need to get the first
character, and warn about the missing braces. This can be done using the
&missing braces subroutine:

unless (s/$next_pair_pr_rx/$month=$2;’’/eo)
{

$month = &missing_braces;
}

or more succinctly:

$month = &missing_braces unless s/$next_pair_pr_rx/$month=$2;’’/eo;

So the whole subroutine should look like:

sub do_cmd_monthname{
local($_) = @_;
local($month);

$month = &missing_braces unless
s/$next_pair_pr_rx/$month=$2;’’/eo;

$Month[$month] . $_;
}

The subroutine &do cmd today can now be modified so that it uses the
\monthname command:

sub do_cmd_today{
local($_) = @_;
local($sec,$min,$hr,$day,$month,$year) = localtime(time);
$year += 1900;
$month++;

local($id) = ++$global{’max_id’};

join(’-’,
$year,
"\\monthname${OP}${id}${CP}$month${OP}${id}${CP}",
$day) . $_;

}

Of course, it would be even easier to use $Month[$month] instead of

\\monthname${OP}${id}${CP}$month${OP}${id}${CP}

but this way illustrates the use of $OP, $CP and $global{’max id’}.
The basic principle can be extended to commands with more than one argu-

ment. Each argument is dealt with in the same way. For example, suppose you
have a command called, say \fmtdate that formats a specific date in a certain
way, then this command would need to take three arguments representing the
day, month and year. The LATEX code might look something like:

5

\newcommand{\fmtdate}[3]{#3-#2-#1}

The Perl subroutine &do cmd fmtdate would then look something like:

sub do_cmd_fmtdate{
local($_) = @_;
local($day,$month,$year);

$day = &missing_braces unless
s/$next_pair_pr_rx/$day=$2;’’/eo;

$month = &missing_braces unless
s/$next_pair_pr_rx/$month=$2;’’/eo;

$year = &missing_braces unless
s/$next_pair_pr_rx/$year=$2;’’/eo;

join(’-’, $year, $month, $day) . $_;
}

3.3 Optional arguments

Suppose you want the \monthname command defined in the previous section to
have an optional argument instead of a mandatory argument. If the argument
is omitted, the current month will be used. The LATEX code will now look like:

\newcommand{\monthname}[1][\month]{%
\ifcase#1
\or January%
\or February%
\or March%
\or April%
\or May%
\or June%
\or July%
\or August%
\or September%
\or October%
\or November%
\or December%
\fi}

The Perl subroutine &do cmd monthname will now need to use the subroutine
&get next optional argument. This returns two parameters: the contents of
the optional argument and the pattern. For example, if $ contains the string

[1] is a very chilly month
in Britain.

then

($month,$pat) = &get_next_optional_argument;

6

will result in $month="1" and $pat="[1]", and $ will now contain the string:

is a very chilly month
in Britain.

The subroutine &do cmd monthname can now be modified as follows:

sub do_cmd_monthname{
local($_) = @_;
local($sec,$min,$hr,$day,$month,$pat);

($month,$pat) = &get_next_optional_argument;

if ($month eq ’’)
{

($sec,$min,$hr,$day,$month) = localtime(time);
$month++;

}

$Month[$month] . $_;
}

Note: be careful not to do:

$month = &get_next_optional_argument;

4 Writing Subroutines to Translate LATEX Envi-
ronments

For every environment env-name that is encountered, LATEX2HTML will use the
subroutine &do env env-name, if it exists. The body of the environment will be
passed to this subroutine as a single string.

Consider a trivial example: suppose you want to define an environment
called, say, bfit that typesets its contents in a bold italic font, the LATEX code
might look something like:

\newenvironment{bfit}
{\begin{bfseries}\itshape}
{\end{bfseries}}

The corresponding Perl file will need to define a subroutine called &do env bfit,
that will look something like:

sub do_env_bfit{
local($_) = @_;

"<I>" . $_ . "</I>";
}

This puts the contents of the environment into the HTML bold and italic
markups.

7

4.1 Environments with an argument

Obtaining the argument information for an environment is much the same as
that for a command, as described in section 3.2, except that the argument
is delimited by OnC instead of OPnCP. Suppose you have an environment
called, say, exercise which will typeset an exercise for the reader. Each exercise
has an argument—the exercise title—which will be typeset in bold at the start
of the environment. The LATEX code might look something like:

\newenvironment{exercise}[1]%
{\begin{quote}\textbf{Exercise : #1}\par}
{\end{quote}}

The Perl code will then look something like:

sub do_env_exercise{
local($_) = @_;
local($title);

$title = &missing_braces
unless (s/$next_pair_rx/$title=$2,’’/eo);

"<BLOCKQUOTE>Exercise : $title<P>"
. $_ . "</BLOCKQUOTE>";

}

Note the use of $next pair rx instead of $next pair pr rx.
Optional arguments are dealt with in the same way as described in section 3.3

For example, suppose the exercise environment above should have an optional
argument instead. If the argument is present it is used as a title, e.g. Exercise
: The Title, but if it is not present, the title is simply Exercise. The LATEX
code will look something like2:

\newenvironment{exercise}[1][]%
{\begin{quote}
\textbf{Exercise\ifthenelse{\equal{#1}{}}{}{ : #1}}\par}
{\end{quote}}

and the Perl code should look something like:

sub do_env_exercise{
local($_) = @_;
local($title,$pat);

($title, $pat) = &get_next_optional_argument;

if ($title ne ’’)
{

$title = " : $title";
}

"<BLOCKQUOTE>Exercise$title<P>" . $_ . "</BLOCKQUOTE>";
}

2Remember to use the ifthen package.

8

5 Counters

LATEX counters are stored in the hash table %global. For example, consider the
exercise environment defined in the previous section. Suppose each exercise
should have a corresponding counter, also called exercise. The LATEX code
will now look something like:

\newcounter{exercise}

\newenvironment{exercise}[1][]%
{\begin{quote}
\refstepcounter{exercise}%
\textbf{Exercise \theexercise\ifthenelse{\equal{#1}{}}{}{ : #1}}\par}
{\end{quote}}

The Perl code will now look something like:

$global{’exercise’} = 0;

sub do_env_exercise{
local($_) = @_;
local($title,$pat);

($title, $pat) = &get_next_optional_argument;

if ($title ne ’’)
{

$title = " : $title";
}

$global{’exercise’}++;

"<BLOCKQUOTE>Exercise ".
$global{’exercise’} .
"$title<P>" . $_ . "</BLOCKQUOTE>";

}

You can also obtain the value of a counter using the subroutine &get counter value:

$val = &get_counter_value($ctr);

where $ctr contains the name of the counter, and $val is the value of that
counter.

If you have a LATEX command that has the name of a counter passed as
an argument, you can read it in using &read counter value. This reads in a
string, extracts the name of the counter at the start of the string and returns the
counter name, its value, the unique identifier delimiting it and the remainder of
the input string. For example, suppose you want a LATEX command called, say,
\bfroman which takes the name of a counter as the argument, and typesets it
in bold roman numerals:

\newcommand{\bfroman}[1]{\textbf{\roman{#1}}}

9

then the Perl subroutine would look something like:

sub do_cmd_bfroman{
local($ctr,$val,$id,$_) = &read_counter_value($_[0]);

if ($val < 0)
{

$val = join(’’, "-", &froman(-$val));
}
else
{

$val = &froman($val);
}

"$val" . $_;
}

6 Defining Package Options

Given a package called name, each package option opt is dealt with by the
subroutine &do name opt. Returning to the mydate package example, described
in section 3.1, suppose this package now has two options: dash (e.g. 2005-6-30)
and dot (e.g. 2005.6.30). The LATEX code will now look something like:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mydate}
\newcommand{\datesep}{-}
\DeclareOption{dash}{\renewcommand{\datesep}{-}}
\DeclareOption{dot}{\renewcommand{\datesep}{.}}
\ProcessOptions

\renewcommand{\today}{\number\year\datesep
\number\month\datesep\number\day}

\endinput

The Perl code will now need the subroutines &do mydate dash and &do mydate dot
in order to implement the package options. The file mydate.perl will now look
something like:

#!/usr/bin/perl

$datesep = ’-’;

sub do_mydate_dash{
$datesep = ’-’;

}

sub do_mydate_dot{
$datesep = ’.’;

}

10

sub do_cmd_datesep{
local($_) = @_;
$datesep . $_;

}

sub do_cmd_today{
local($_) = @_;
local($sec,$min,$hr,$day,$month,$year) = localtime(time);
$year += 1900;
$month++;

"$year\\datesep $month\\datesep $day" . $_;
}

1;

Suppose you now want to use the keyval package to specify your package op-
tions. For example, you might want to do:

\usepackage[style=dash]{mydate}

or

\usepackage[style=dot]{mydate}

For each package option in the form key=value, you need to supply the subrou-
tine &do packagename key value. So for the above example, you will need:

sub do_mydate_style_dash{
$datesep = ’-’;

}

sub do_mydate_style_dot{
$datesep = ’.’;

}

7 Reading Other Files

There are several subroutines for reading other files:

&slurp input takes one argument, the name of the file to be input. The con-
tents of the file are put in $ without any conversion applied.

&slurp input and partition and pre process takes one argument, the name
of the file to be input. This subroutine reads the entire input file and pre-
processes it. It is then returned as a single string.

&process ext file This reads in a LATEX generated file with the same root
name as the main file being processed, but a different extension (e.g. aux
or bbl). It takes one argument, the file extension, and returns success or
failure, and $ is set.

11

Be careful when specifying the filename with the first two, as LATEX2HTML
may not be in the directory you started in, so it is best to give the full pathname
using $texfilepath and $dd.

Suppose you have a LATEX command called, say, \inputcsv{filename}, which
reads in comma-separated data from the file given by filename, and sets it in a
table. For example, if the contents of the file sample.csv looked like:

1,5,10,12,3
4,7,9,5,2
7,3,2,1,0

then \inputcsv{sample.csv} will produce the following table:

1 5 10 12 3
4 7 9 5 2
7 3 2 1 0

then the Perl code, might look something like:

sub do_cmd_inputcsv{
local($after) = @_;
local($file,$table);

$file = &missing_braces
unless ($after=~s/$next_pair_pr_rx/$file=$2;’’/eo);

$file = "$texfilepathddfile";

&slurp_input($file);

s/,/<\/TD><TD ALIGN=RIGHT>/sg;
s/\n/<\/TD><\/TR>\n<TR><TD ALIGN=RIGHT>/sg;
s/^/<TR><TD ALIGN=RIGHT>/g;

$table = "</TD></TR><TABLE ALIGN=CENTER>";
$table .= $_;
$table .= "</TABLE>";

$table . $after;
}

Since sample.csv does not contain any LATEX code—and so no translation
is required—&slurp input is used. Note that the full pathname is given by
prepending $texfilepath$dd to the given file name. Note also the use of
$after instead of $. This was done because &slurp input modifies $. If
the file is likely to contain LATEX commands, e.g.:

A,B,C,D,E\&F
1,5,10,12,3
4,7,9,5,2
7,3,2,1,0

then you should use &slurp input and partition and pre process instead.

12

Useful LATEX2HTML Subroutines and Variables

$dd

The directory divider. This is platform specific, and is determined at the
start of the LATEX2HTML run. Use this variable to ensure that your code
is platform independent. 12

&get next optional argument

Extracts optional argument at the start of $ and returns ($argument,
$pattern). 6

$global{’max id’}
This is the maximum number of unique identifiers. 2, 5

&missing braces

Generate a warning message and extract first character from $. 5

@Month

The month names in the currect language are stored in this array. Note
that $Month[0] is empty, so subscripts effectively start from 1. 4, 5

$next pair pr rx

Regular expression used to extract the group at the start of $ delimited
by OPnCP. The contents of the group is given by $2, the unique identifier
belonging to that group is given by $1. 4, 8

$next pair rx

Regular expression used to extract the group at the start of $ delimited
by OnC. The contents of the group is given by $2, the unique identifier
belonging to that group is given by $1. 8

&slurp input

This takes one argument, the name of the file to be input. The contents
of the file are placed in $ without any conversion applied. 11, 12

&slurp input and partition and pre process

This takes one argument, the name of the file to be read. The contents of
the file are translated and placed in $. 11, 12

$texfilepath

The directory containing the LATEX file to be translated. 12

References

[1] Chuck Musciano and Bill Kennedy. HTML: The definitive guide. O’Reilly
& Associates, Inc, 1996.

[2] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly, 2nd edition, 1996.

13

	Introduction
	The LaTeX2HTML Process
	Writing Subroutines to Translate LaTeX Commands
	Commands without an argument
	Commands with arguments
	Optional arguments

	Writing Subroutines to Translate LaTeX Environments
	Environments with an argument

	Counters
	Defining Package Options
	Reading Other Files
	Subroutines and Variables

