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Abstract

Mika et al. [1] introduce a non-linear formulation of Fisher’s linear discriminant,

based the now familiar “kernel trick”, demonstrating state-of-the-art performance

on a wide range of real-world benchmark datasets. In this paper, we extend an ex-

isting analytical expression for the leave-one-out cross-validation error [2] such that

the leave-one-out error can be re-estimated following a change in the value of the

regularisation parameter with a computational complexity of only O(`2) operations,

which is substantially less than the O(`3) operations required for the basic training

algorithm. This allows the regularisation parameter to be tuned at an essentially

negligible computational cost. This is achieved by performing the discriminant anal-

ysis in canonical form. The proposed method is therefore a useful component of a

model selection strategy for this class of kernel machines that alternates between

updates of the kernel and regularisation parameters. Results obtained on real-world

and synthetic benchmark datasets indicate that the proposed method is competi-

tive with model selection based on k-fold cross-validation in terms of generalisation,

whilst being considerably faster.

Key words: model selection, cross-validation, least-squares support vector machine
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1 Introduction

In recent years the “kernel trick” has been applied to construct non-linear

equivalents of a wide range of classical linear statistical models, for instance

ridge regression [3, 4], principal component analysis [5, 6] and Fisher’s linear

discriminant [1, 7], in addition to more modern techniques, such as the max-

imal margin classifier [8, 9] (for an introduction to kernel learning methods,

see Schölkopf and Smola [10] or Shawe-Taylor and Cristianini [11]). An im-

portant advantage of kernel models is that the parameters of the model are

typically given by the solution of a convex optimisation problem, with a sin-

gle, global optimum [12]. The generalisation properties of kernel models are

however typically governed by a small number of regularisation and kernel

parameters. Good values for these parameters must be determined during the

model selection process. There is generally no guarantee that the model se-

lection criterion is unimodal, and so simple grid-based search procedures are

often employed in practical applications. In this paper, we propose a simple

and computationally efficient method for choosing the regularisation parame-

ter in kernel Fisher discriminant analysis so as to minimise an approximation

to the leave-one-out cross-validation error. The resulting optimally regularised

kernel Fisher discriminant (ORKFD) analysis algorithm then becomes attrac-

tive for small to medium-scale applications (currently anything less than a

few thousand training patterns) as the algorithm is easily implemented (only

15 lines of code in the MATLAB programming environment) and inherently

resistant to over-fitting.

The remainder of this paper is structured as follows: Section 2 reviews the ker-

nel Fisher discriminant classifier and introduces the notation used throughout.
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Section 3 then proposes an efficient algorithm for selecting the regularisation

for a KFD classifier, so as to minimise the leave-one-out cross-validation er-

ror, with a computational complexity of only O(`2) operations instead of the

O(`3) operations of direct methods 1 [2]. Section 4 presents results obtained on

a range of real-world benchmark datasets. The extension of this approach to

closely related forms of least-squares kernel learning is discussed in Section 5.

Finally, the work is summarised in section 6.

2 The Kernel Fisher Discriminant Classifier

Assume we are given training data X = {x1, x2, . . . ,x`} = {X1,X2} ⊂ Rd,

where X1 = {x1
1, x

1
2, . . . ,x

1
`1
} is a set of patterns belonging to class C1 and

similarly X2 = {x2
1, x

2
2, . . . ,x

2
`2
} is a set of patterns belonging to class C2;

Fisher’s linear discriminant (FLD) attempts to find a linear combination of

input variables, w ·x, that maximises the average separation of the projections

of points belonging to C1 and C2, whilst minimising the within class variance of

the projections of those points. The Fisher discriminant is given by the vector

w maximising

J(w) =
wT SBw

wT SW w
, (1)

1 The KFD classifier can also be trained using iterative methods, such as conjugate

gradient descent, with a lower computational complexity [13]. However, using such

methods the leave-one-out error can no longer be computed efficiently in closed

form, and so in the remainder of this paper it is assumed that a direct approach,

such as Cholesky factorisation, is taken.
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where SB = (m1 −m2)(m1 −m2)
T , is the between class scatter matrix, mj

is the mean of patterns belonging to Cj,

mj =
1

`j

`j∑
i=1

xj
i ,

and SW is the within class scatter matrix

SW =
∑

i∈{1,2}

`i∑
j=1

(xi
j −mi)(x

i
j −mi)

T .

The innovation introduced by Mika et al. [1] is to construct Fisher’s linear

discriminant in a fixed feature space F (φ : X → F) induced by a pos-

itive definite Mercer kernel K : X × X → R defining the inner product

K(x, x′) = φ(x) · φ(x′) (see e.g. Cristianini and Shawe-Taylor [14]). Let the

kernel matrices for the entire dataset, K, and for each class, K1 and K2 be

defined as follows:

K = [kij = K(xi, xj)]
`
i,j=1

and

Ki = [ki
jk = K(xj, x

i
k)]

j=`,k=`i
j,k=1 .

The theory of reproducing kernels indicates that w can then be written as an

expansion of the form

w =
∑̀
i=1

αiφ(xi). (2)

The objective function (1) can also be written such that the data x ∈ X

appear only within inner products, giving

J(α) =
αT Mα

αT Nα
, (3)

where α = [α1, . . . , α`]
T , M = (m1 −m2)(m1 −m2)

T , mi = Kiui, ui is a

column vector containing `i elements with a common value of `−1
i and

N =
∑

i∈{1,2}
Ki(I −Ui)K

T
i ,
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where I is the identity matrix and U i is a matrix with all elements equal to

`−1
i . The coefficients, α, of the expansion (2) are then given by the leading

eigenvector of N−1M . Note that N is likely to be singular, or at best ill-

conditioned, and so a regularised solution is obtained by substituting Nµ =

N + µI, where µ is a regularisation constant. To complete the kernel Fisher

discriminant classifier, f(x) = w · φ(x) + b, the bias, b, is given by

b = −α
`1M 1 + `2M 2

`
.

Xu et al. [15] show that the parameters of the kernel Fisher discriminant clas-

sifier are also given by the solution of the following system of linear equations:


KT K + µI KT1

(KT1)T `




α

b

 =


KT

1T

 y, (4)

where 1 is a column vector of ` ones and y is a column vector with elements

yi = `/`j ∀i : xi ∈ Xj. This illustrates the similarities between the kernel

Fisher discriminant and the least-squares support vector machine (LS-SVM)

[16]. The kernel Fisher discriminant (KFD) classifier has been shown experi-

mentally to demonstrate near state-of-the-art performance on a range of arti-

ficial and real world benchmark datasets [1] and so is worthy of consideration

for small to medium scale applications. In this paper we present an efficient al-

gorithm for approximate cross-validation of kernel Fisher discriminant models,

providing a practical criterion for model selection.
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3 Method

In this section, we describe a training algorithm for the kernel Fisher discrimi-

nant classifier in which the system of linear equations (4) is solved in canonical

form. This allows the model parameters to be updated following a change in

the value of the regularisation parameter with a computational complexity of

only O(`) operations. This also permits the extension of an existing analytic

method [2] for re-evaluation of the leave-one-out cross-validation error in only

O(`2) operations, rather than the O(`3) operations of the existing analytic

method [2], or the O(`4) of a näıve direct implementation. This is used to

form the basis of a criterion for gradient descent optimisation of the regulari-

sation parameter µ, at an essentially negligible computational expense.

3.1 The Kernel Fisher Discriminant in Canonical Form

Neglecting the bias parameter, the system of linear equations (4) can be writ-

ten more concisely in the form

α =
[
KT K + µI

]−1
KT y, (5)

Let V be an orthogonal matrix, the columns of which are the eigenvectors of

KT K, and Λ be a diagonal matrix containing the corresponding eigenvalues

λ0 ≥ λ1 ≥ · · · ≥ λ` ≥ 0, such that

KT K = V ΛV T , V V T = V T V = I.

The principal components of K are then given by the columns of U = KV ;

note that UT U = Λ. The system of linear equations (5) can then be ex-

pressed in canonical form (following the methods and terminology used in
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linear regression [17]) as

β = C−1UT y = [Λ + µI]−1 UT y, (6)

where β = V T α. Note that a similar result could be obtained via singular

value decomposition [18] of the kernel matrix, K. The principal advantage of

expressing the system of linear equations (5) in this form is that the matrix

C is diagonal, and so can be inverted in linear time, i.e. O(`) operations.

Let β0 represent the canonical form parameters for a KFD classifier with

regularisation parameter µ0. Furthermore, let υi represent the ith element of

UT y, then as [Λ + µI] is a diagonal matrix,

β0
i =

(
λi + µ0

)−1
υi,

and similarly, we can write

βi

β0
i

=
(λi + µ)−1 υi

(λi + µ0)−1 υi

=
λi + µ0

λi + µ

The canonical parameters of the kernel Fisher discriminant classifier with an

arbitrary regularisation parameter can be found in linear time by scaling the

parameters of a “reference” kernel Fisher discriminant (in canonical form)

with regularisation parameter µ0,

βi =
λi + µ0

λi + µ
β0

i , i = 0, 1, 2, . . . , `.

It should be noted that adopting the canonical form (6), the parameters of the

kernel Fisher discriminant model in original form, α = V β, can be updated

following a change in the regularisation parameter, µ, with a computational

complexity of only O(`2) operations. If instead we work with the equivalent

canonical form parameters β, the vector of regularisation parameters can be

updated in linear time, i.e. O(`) operations.
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3.2 Efficient Leave-One-Out Cross-Validation

In this section, we review an analytic expression for the leave-one-out cross-

validation error of a kernel Fisher discriminant classifier introduced by Cawley

and Talbot [2] (c.f. [17, 19]), and demonstrate that in canonical form it can be

evaluated with a computational complexity of only O(`2) operations, rather

than the O(`3) operations required using the original parameterisation. At

each step of the leave-one-out cross-validation procedure, a kernel Fisher dis-

criminant classifier is constructed excluding a single training pattern from the

data. The vector of canonical model parameters, ω(i) at the ith step, in which

pattern i is excluded, is then given by the solution of a modified system of

linear equations,

β(i) =
[
µI + UT

(i)U (i)

]−1
UT

(i)y

where U (i) is the sub-matrix formed by omitting the ith row of U . Note that

UT
(i)U (i) is in general no longer diagonal, and so the most computationally

expensive step is normally the inversion of the matrix C(i) =
[
µI + UT

(i)U (i)

]
,

with a complexity of O(`3) operations. Fortunately C(i) can be written as a

rank one modification of a matrix C,

C(i) =
[
µI + UT U − uiu

T
i

]
=

[
C − uiu

T
i

]
, (7)

where ui is the ith row of U . The Bartlett matrix inversion lemma,

(
A + uvT

)−1
= A−1 − A−1uvT A−1

1 + vT A−1u
, (8)

then allows C−1
(i) to be found in only O(`2) operations, given that C−1 is

already known. Applying the (8) to the matrix inversion problem given in (7),
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we obtain

C−1
(i) = [C − uiu

T
i ]−1 = C +

C−1uiu
T
i C−1

1− uT
i C−1ui

.

The computational complexity of the leave-one-out cross-validation process

is thus reduced to only O(`3) operations, which is the same as that of the

basic training algorithm for the kernel Fisher discriminant classifier. For model

selection purposes, however, we are not principally concerned with the values

of the model parameters themselves, but only statistics such as the leave-one-

out error rate

Eloo =
1

`

∑̀
i=1

{1−Ψ(1− sign(yi)
{
r(i)

}
i
)},

where Ψ is the Heaviside or unit step function,

Ψ(x) =


1 x ≥ 0

0 x < 0

.

and
{
r(i)

}
i

= sign(yi) − w(i) · φ(xi) − b(i) is the residual error for the ith

training pattern during the ith iteration of the leave-one-out cross-validation

procedure. It can be shown that

{
r(i)

}
i
=

1

1− hii

ri.

where ri = sign(yi) − w · φ(xi) − b is the residual error for the ith training

pattern for a kernel Fisher discriminant classifier trained on the entire dataset,

and H = UC−1UT is the hat matrix of which hii is the ith element of the

leading diagonal [17]. In this case, C is diagonal and can be inverted in linear

time, and therefore an individual element of the diagonal of the “hat” matrix

can also be computed in linear time,

hii =
∑̀
j=1

u2
ijc

−1
jj =

∑̀
j=1

u2
ij

(λj + µ)
.
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The diagonal elements of the “hat” matrix can then be computed with a

complexity of O(`2) operations. Note that r can also be written as r =

sign(y)−Hy and hence

ri = sign(yi)−
∑̀
j=1

∑̀
k=1

uikujk

λk + µ
yj = sign(yi)−

∑̀
j=1

1

λj + µ

∑̀
k=1

uijukjyk.

Provided that one pre-computes
[∑`

k=1 uijukjyk

]`

i,j=1
, which does not depend

on µ, the residuals for a classifier trained on the entire dataset, r, can also be

computed with a complexity of O(`2) operations. The leave-one-out error rate

can thus be evaluated in closed form without explicit inversion of C(i) ∀i ∈

{1, 2, . . . , `}, with a computational complexity of only O(`2) operations. This

would not be the case for kernel Fisher discriminant analysis performed in

the original parameterisation, where the computational complexity would be

O(`3) because C would no longer be a diagonal matrix.

3.3 Gradient Descent Optimisation

While the leave-one-out error (or an upper bound thereof) has been found to

be an effective model selection criterion for a range of kernel machines, in-

cluding kernel Fisher discriminant [20] and support vector machines [21], it is

discrete and therefore it is difficult to form an efficient automated model selec-

tion procedure. In order to allow an efficient gradient descent model selection

scheme, we approximate the Heaviside unit step function using a compressed

sigmoidal logistic function,

f(x) =
1

1 + exp{−γx}
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as shown in figure 1, where γ represents the compression factor; clearly f(x)

approaches the Heaviside step function, Ψ(x), increasingly closely as γ be-

comes large.

E =
1

`

∑̀
i=1

{1− f(1− sign(yi)
{
r(i)

}
i
)} ≈ Eloo. (9)

For convenience we will assume, as is normally the case, a single regularisation

parameter µ; it is then straight-forward to obtain the derivative of the modified

model selection criterion with respect to the regularisation parameter:

∂E

∂µ
=

1

`

∑̀
i=1

f ′(1− sign(yi)
{
r(i)

}
i
) sign(yi)

∂

∂µ

{
r(i)

}
i
,

where

∂

∂µ

{
r(i)

}
i
=

ri

(1− hii)2

∂hii

∂µ
+

1

1− hii

∂ri

∂µ
,

∂hii

∂µ
=−

∑̀
j=1

u2
ij

(λj + µ)2
,

∂ri

∂µ
=

∑̀
j=1

∑̀
k=1

uikujk

(λk + µ)2
yj,

f ′(x) = γ[f(x)(1− f(x))].

Likewise, the second order derivative is given by

∂2E

∂µ2
=

1

`

∑̀
i=1

−f ′′(1− sign(yi)
{
r(i)

}
i
)

[
∂

∂µ

{
r(i)

}
i

]2

+ f ′(1− sign(yi)
{
r(i)

}
i
) sign(yi)

∂2

∂µ2

{
r(i)

}
i

}
,

where
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∂2

∂µ2

{
r(i)

}
i
=

2ri

(1− hii)3

[
∂hii

∂µ

]2

+
ri

(1− hii)2

∂2hii

∂µ2

+
2

(1− hii)2

∂hii

∂µ

∂ri

∂µ
+

1

1− hii

∂2ri

∂µ2
,

∂2hii

∂µ2
= 2

∑̀
j=1

u2
ij

(λj + µ)3
,

∂2ri

∂µ2
=−2

∑̀
j=1

∑̀
k=1

uikujk

(λk + µ)3
yj,

f ′′(x) = γ2f(x)(1− f(x))(1− 2f(x)).

The locally optimal value of regularisation parameter can then be determined

using a simple Newton-Raphson second-order gradient descent optimisation

procedure,

µt+1 = µt − η

[
∂2E

∂µ2

]−1
∂E

∂µ
.

In practise, we adopt a simple step halving heuristic to ensure convergence

to a local minima. At each iteration, we begin by making a full Newton step,

i.e. η = 1, if this does not reduce the value of the model selection criterion,

E, a step is made in the same direction, but of half the original magnitude,

i.e. η ← 0.5η. This process is repeated until a reduction in the value of the

model selection criterion is obtained, or the number of step halvings exceeds a

predetermined threshold. Furthermore, for a smoother minima search, instead

of differentiating with respect to µ we differentiate with respect to log(µ). This

also ensures that µ takes on only positive values.

log(µt+1) = log(µt)− η

[
∂2E

∂ log(µ)2

]−1
∂E

∂ log(µ)

where

∂

∂ log(µ)
= µ

∂

∂µ
,

∂2

∂ log(µ)2
= µ

∂

∂µ
+ µ2 ∂2

∂µ2
.
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3.4 Accommodating an Unregularised Bias Parameter

Accommodating a regularised bias parameter to the canonical form kernel

Fisher discriminant is relatively straignt-forward; we simply augment the ker-

nel matrix with a vector of ones, such that K̃ ← [K 1] and procede as before.

However, a regularised bias term is somewhat inelegant, as the regularisa-

tion term is primarily intended to express a preference for relatively smooth

functions, a property of the model that is independent of the bias. The incor-

poration of an unregularised bias term is however rather more difficult. The

model parameters of the kernel Fisher discriminant are given by the solution

of the the system of linear equations, (4). In canonical form, the kernel Fisher

discriminant including an unregularised bias parameter, is given by


Λ + µI UT1

1T U `




β

b

 =


UT y

1T y

 ,

where the definitions of Λ, U , and β are the same as those given in the previous

section. The Hat matrix, which transforms the targets onto the outputs, ŷ =

Hy, is then given by

H = [hij]
`
i,j=1 =


U 1



Λ + µI UT1

1T U `



−1 
UT

1T

 .

The leave-one-out cross-validation behaviour of the sparse kernel Fisher dis-

criminant is governed by

yi − ŷ
(−i)
i =

yi − ŷi

1− hii
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and so in order to evaluate a leave-one-out cross-validation based model selec-

tion criterion, the model output ŷ = Hy and the diagonal elements of the Hat

matrix, H , are required. These can be obtained via the block matrix inversion

formula, giving


M UT1

1T U `



−1

=


M−1 + M−1UT1S−1

M 1T UM−1 −M−1UT1S−1
M

−S−1
M 1T UM−1 S−1

M

 ,

where M = Λ + µI and SM = ` − 1M−11 is the Schur complement of M .

The diagonal entries of the hat matrix can then be written as

hii =
n∑

j=1

u2
ij

λj + µ
+

1

SM

[
η2

i − 2ηi + 1
]
,

where

Sm = `−
n∑

i=1

ζ2
i

λi + µ
, ηi =

n∑
j=1

uijζj

λj + µ
and ζi =

∑̀
j=1

uji.

Likewise, the output of the kernel Fisher discriminant is given by

ŷi = νi +
ηi − 1

SM

∑̀
j=1

ηjyj −
∑̀
j=1

yj

 ,

where

ξi =
n∑

j=1

ujiyj and νi =
n∑

j=1

uijξj

λj + µ
.

The individual elements of the principal diagonal of the Hat matrix, H , and of

ŷ, can be computed with a computational complexity ofO(`) operations. Once

the model has been expressed in canonical form, therefore, the leave-one-out

cross-validation estimate of the model selection criterion can be evaluated with

a complexity of only O(`2) operations, although the algorithm is a little more

complex than for the kernel Fisher discriminant without an unregularised bias

parameter.
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3.5 Computational Complexity

In order to obtain a well-regularised kernel Fisher discriminant classifier us-

ing the original parameterisation, we must train the classifier and evaluate

the leave-one-out error N times, if we are to search for the best of N candi-

date values for the regularisation term. The most expensive step in training

the KFD lies in the solution of a set of linear equations, with a computational

complexity of O(`3) operations (we will assume that the inverse of C produced

as a by-product). In this case, the computation of the diagonal elements of the

“hat” matrix, required in evaluation of the leave-one-out error, is also O(`3)

as C−1 is a full matrix. In this case, the only computation shared between

models with different regularisation parameters lies in the evaluation of the

kernel matrix, K, and KT K, O(`2) and O(`3) processes respectively. On the

other hand, if training is performed in canonical form, we first compute the

eigendecomposition of KT K, at a cost of O(`3) operations. We may then eval-

uate the leave-one-out error for N values for the regularisation parameter, µ,

with a complexity of only O(`2) operations. The canonical parameters for the

optimal value of the regularisation parameter are then given by the solution

of a diagonal system of linear equations, with a complexity of O(`) opera-

tions, which are then transformed to give the coefficients of the original kernel

expansion, with a complexity of O(`2) operations. The overall computational

complexity of obtaining a well regularised classifier is O(`3), regardless of the

parameterisation, however the canonical parameterisation is faster in practise

as the eigen-decomposition of KT K is only performed once, and the cost

amortised over the evaluation of the N candidate values of the regularisation

parameter.
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3.5.1 Sparse Kernel Models

The training algorithm of the kernel Fisher discriminant classifier exhibits a

computational complexity ofO(`3) operations, which makes it suitable for only

small or medium-scale applications (currently up to a few thousand training

patterns). For larger-scale applications, a sparse kernel expansion can be used

instead, where only a sub-set of the available training patterns are used (see

e.g. [22]). The computational complexity of the training algorithm then falls

to only O(`n2), where n is the number of non-zero terms remaining in the

kernel expansion. There are a variety of means by which a sub-set of training

patterns can be selected, from random selection, incomplete Cholesky fac-

torisation [23] or greedy selection (see e.g. [10, 24]). The proposed scheme

for selecting an optimal value for the regularisation parameter can be applied

essentially unaltered in the case of a sparse kernel machine; the overall compu-

tational complexity remains O(`n2), however the cost of expressing the model

in canonical form can again be amortised over the evaluation of a number

of candidate values for the regularisation parameter, allowing a very efficient

search for its optimal value. The computational advantage of the proposed

method is thus exactly the same for sparse and fully dense kernel models. A

similar scheme has recently been proposed independently by Wang et al. [25].

4 Results

The runtime for model selection based on the proposed optimally regularised

kernel Fisher discriminant classifier is evaluated over a series of randomly

generated synthetic datasets. In each case, approximately one quarter of the

data belong to class C1 and three-quarters to class C2. The patterns comprising
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class C1 are drawn from a bivariate Normal distribution with zero mean and

unit variance. The patterns forming class C2 form an annulus; the radii of the

data are drawn from a normal distribution with a mean of 4 and unit variance,

and the angles uniformly distributed. The datasets vary in size between 8 and

4096 patterns, an example of which is shown in Figure 2.

Figure 3 shows a graph of the time taken to select the best value for the regular-

isation parameter, from 21 candidate values (µ ∈ {2i | i = −10,−9, . . . , 0, . . . , +9, +10}),

for the ORKFD and for a conventional KFD using the existing analytic leave-

one-out cross-validation procedure (without re-parameterisation into canon-

ical form) [2]. The for large `, the gradients of the lines representing total

elapsed time for both the ORKFD and KFD are approximately three (on

log-log axes), indicating that both algorithms have a computational complex-

ity of O(`3). The ORKFD is however approximately an order of magnitude

faster, representing a significant advance over existing approaches (e.g. [2]).

The dashed lines in Figure 3 represent the time spent exclusively on the search

for the optimal value of the regularisation parameter, µ. For the conventional

KFD, this is almost equal to the total time as there is relatively little shared

computational effort in estimating the leave-one-out error for models differing

only in the value of µ. In this case, the only significant computational expense

that can be amortised over the search lies in the evaluation of the kernel ma-

trix and in computing KT K. For the ORKFD, on the other hand, once the

model has been expressed in canonical form, the leave-one-out cross-validation

error can be evaluated very efficiently for different values of µ. For large `, the

gradient of the dashed line representing ORKFD search time is approximately

two (on log-log axes), indicating that this procedure has a computational

complexity of only O(`2) operations. This means that, for large `, the cost
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of optimising the value of the regularisation parameter becomes essentially

negligible (e.g. 0.4% of the total run-time for ` = 4096).

It is known that down-dating a system of linear equations, as occurs in the

analytic leave-one-out cross-validation process, can be numerically unstable

[26], and so we also investigate the stability of the algorithm, with respect to

direct implementation of the leave-one-out cross-validation procedure. Let the

relative approximation error be defined as

e =
‖r̃ − r̂‖2

‖r̃‖2
,

where r̃ is a vector of leave-one-out residual errors computed via the direct

approach and r̂ is the corresponding vector of residual errors resulting from the

proposed method. Figure 4 shows a graph of the mean relative approximation

error, as a function of the number of training patterns. The approximation

error is small for datasets of more than ≈ 30 training patterns.

In order to verify that the optimally regularised kernel Fisher discriminant

classifier is competitive in terms of generalisation, it is evaluated against a

range of leading classification methods over a suite of 13 real world and

synthetic benchmark problems from the UCI repository [27]. We adopt the

experimental procedure used in the study by Rätsch et al. [28], where 100

different random training and test splits are defined (20 in the case of the

large-scale image and splice datasets). Model selection is performed on the

first five training splits, taking the median of the estimated values for the

optimal regularisation (γ) and kernel (σ) parameters. Generalisation is then

measured by the mean error rate over the 100 test splits (20 for image and

splice datasets). The benchmarks, including test and training splits are avail-

able from http://ida.first.fhg.de/projects/bench. The results obtained



are also compared with those from Mika et al. [29], including kernel Fisher

discriminant models where the model selection procedure minimised a 10-fold

cross-validation estimate of the test error rate, as well as a range of other

state-of-the art classification algorithms, namely radial basis function net-

works (RBF), AdaBoost [30] using RBF networks (AB), LP-AdaBoost [31]

(ABL), QP-AdaBoost [28] (ABQ), regularised AdaBoost [28] (ABR) and the

support vector machine with radial basis kernel [8, 9, 32] (SVM) 2 .

Table 1 shows the outcome of a comparison of model selection procedures for

optimally regularised kernel Fisher discriminant (ORKFD) models and a range

of state-of-the-art statistical pattern recognition algorithms. The ORKFD out-

performs the KFD with 10-fold cross-validation (sum of squares) model selec-

tion (KFD) on seven of the thirteen datasets (banana, german, heart, image,

ringnorm, titanic and waveform), and performs worse on six (breast cancer, di-

abetis, solar flare, splice, thyroid and twonorm). This clearly demonstrates that

the optimally regularised kernel Fisher discriminant classifier is competitive,

in terms of generalisation, with conventional kernel Fisher discriminant clas-

sifiers with a 10-fold cross-validation based model selection strategy adopted

by Mika et al. [29]. This performance is however achieved at a greatly reduced

computational expense. The superior performance of the ORKFD method,

against the range of state-of-the-art algorithms, should also be noted, provid-

ing the lowest error rate on five of the thirteen datasets and the second best

on three of the remaining benchmarks.

2 Details of simulation parameters are also available from

http://ida.first.fhg.de/projects/bench.



5 Optimal Regularisation for Related Formulations

The use of the eigendecomposition, or equivalently the singular value deco-

mosition, to isolate the effect of the regularisation term can also be used

to develop optimally regularised variants of kernel ridge regression [4] (also

known as the regularization network [33] and regularised least squares [34])

and the least-squares support vector machine [16]. Kernel ridge regression [4]

constructs a kernel model, without a bias term, minimising a least-squares

loss function with a regularisation term acting on the primal model param-

eters rather than the dual parameters. The dual model parameters are then

given by the solution of the following system of linear equations

[K + µI] α = y.

Let K = V ΛV T represent the eigendecomposition of K, where V and Λ

represent the eigenvectors and eigenvalues as before. Substituting, and noting

that V V T = V T V = I, we obtain

[
V ΛV T + µI

]
α = V

[
Λ + µV T IV

]
V T α = V [Λ + µI] V T α = y

So in cannonical form, the parameters of the kernel ridge regression model are

given by

β = [Λ + µI]−1 ξ

where β = V α and ξ = V T y. Again, since Λ is a diagonal matrix, the

canonical parameters can be updated following a change in the regularisation

parameter with a computational complexity of only O(`) operations. This

formed a component of an alternative convex approach to selection of the

regularisation parameter using a validation set [35]. Alternatively, the optimal

value for the regularisation parameter, µ, can be found by minimising the



leave-one-out cross-validation estimate of the model selection criterion. The

leave-one-out cross-validation behaviour of the kernel ridge regression model

is governed by (e.g. [36])

yi − ŷ
(i)
i =

αi

C−1
ii

where C = [K + µI]. However, as we are dealing with kernel ridge regression

in canonical form, we can write

αi = vi [Λ + µI]−1 ξ and C−1
ii = vi [Λ + µI]−1 vT

i

where vi is the ith row of V . Thus, leave-one-out cross-validation of least-

squares support vector machines can be performed in canonical form, following

a change in the value of the regularisation parameter, at a cost of only O(`2)

operations. This approach was also developed independently by Rifkin and

Lippert [37].

5.1 Incorporating an Unregularised Bias Term

The least-squares support vector machine (LS-SVM) [16] includes an unreg-

ularised bias term, such that the model parameters are given by the solution

of the following system of linear equations,
K + µI 1

1T 0




α

b

 =


y

1

 .

This system of linear equations can be solved by solving two smaller, positive

definite systems [13],

Mη = 1 and Mν = y such that b =
1T ν

1T η
and α = ν − ηb,



where M = K + µI. We may then obtain a canonical form training algo-

rithm for the least-squares support vector machine including a bias term by

performing an eigen-decomposition of M = V ΛV , such that Λ as before,

and make use of the block matrix inversion formula,

C−1 =


M 1

1T 0



−1

=


M−1 + M−11S−1

M 1T M−1 −M−11S−1
M

−S−1
M 1T M−1 S−1

M

 (10)

where SM = −1M−11 is the Schur complement of M . We must therefore

find a computationally efficient manner in which to evaluate αi and C−1
ii in

order to evaluate the leave-one-out error, beginning with expressions for the

individual elements of η and ν,

νi =
∑̀
j=1

vijξj

λj + µ
and ηi =

∑̀
j=1

vijζj

λj + µ

where

ξj =
∑̀
k=1

vkjyk and ζj =
∑̀
k=1

vkj.

Note that, provided we have pre-computed ξ = [ξi]
`
i=1 and ζ = [ζi]

`
i=1, which

do not depend on µ, then η and ν, and hence α may be updated at a cost

of only O(`2) operations following a change in the value of the regularisa-

tion parameter, µ. Using the block matrix inversion formula (10), following a

somewhat lengthy algebraic manipulation, the diagonal elements of C−1 can

be computed as

C−1
ii =

η2
i

SM

+
∑̀
j=1

v2
ij

λj + µ
, noting that SM = −

∑̀
j=1

ηj.

An individual element of the principal diagonal of C−1 can therefore be re-

computed with a computational complexity of O(`) operations, in response

to a change in the value of the regularisation parameter. This permits the



leave-one-out cross-valudation of a least-squares support vector machine with

a computational complexity of only O(`2), provided that it has already been

placed in canonical form. This novel formulation produces results comparable

with those obtained using the optimally regularized kernel Fisher discriminant.

6 Summary

Model selection, the optimal choice of the values for a small number of reg-

ularisation and kernel parameters, is the key step in maximising generali-

sation performance using kernel learning methods. Conventional k-fold and

leave-one-out cross-validation strategies provide computationally expensive,

but highly effective solutions. In this paper, we extend an existing analytic

method for efficient evaluation of the leave-one-out cross-validation error of

a kernel Fisher discriminant classifier [2, 20], based on methods from classical

linear regression [17]. By performing the kernel discriminant analysis in canon-

ical form, the leave-one-out error can be re-evaluated in response to a change

in the value of the regularisation parameter with a computational complexity

of only O(`2), instead of the O(`3) operations required by existing methods

based on the “hat” matrix, or the O(`4) of a näıve direct implementation. The

training algorithms for the kernel Fisher discriminant classifier in the original

and canonical forms both exhibit computational complexities of O(`3). The

cost of obtaining a KFD classifier with a fully optimised regularisation param-

eter therefore remains O(`3), however in canonical form, the cost of optimising

the regularisation parameter becomes negligible. This makes the ORKFD at-

tractive for small to medium scale applications (currently anything less than

a few thousand training patterns) as an important element of the model se-



lection process is solved essentially “for free”. An experimental evaluation

over thirteen benchmark datasets shows that the generalisation performance

of the ORKFD is competitive with that of conventional KFD classifiers with

a 10-fold cross-validation model selection strategy.
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Figure Captions

1 Approximation of the Heaviside unit step function, Ψ(x), by
the scaled logistic function, f(x) = 1/(1 + exp{−γx}).

2 Example of the output of an optimally regularised kernel
Fisher discriminant classifier on the synthetic torus dataset
(see section 6 for details).

3 Graph of run-time as a function of the number of training
patterns for leave-one-out cross-validation of kernel Fisher
discriminant classifiers via direct and fast approximate
methods (mean of 20 trials).

4 Graph of the mean relative approximation error as a function
of the number of training patterns for the proposed fast
approximate leave-one-out cross-validation method (mean of
20 trials).
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List of Tables

1 Comparison of optimally regularised kernel Fisher discriminant
(ORKFD) and other classifiers (see text for details). The
results RBF, AB, ABL, ABQ, ABR, SVM and KFD are taken
from the studies by Mika et al. [1] and Rätsch et al. [28]. The
results for each method are presented in the form of the mean
error rate over test data, along with the associated standard
error. The best results are shown in bold-face, the second best
in italics.
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