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Abstract

Artificial neural networks have proved an attractive approach to non-linear regression prob-

lems arising in environmental modelling, such as statistical downscaling, short-term forecast-

ing of atmospheric pollutant concentrations and rainfall run-off modelling. However, environ-

mental datasets are frequently very noisy and characterised by a noise process that may be

heteroscedastic (having input dependent variance) and/or non-Gaussian. The aim of this paper

is to review existing methodologies for estimating predictive uncertainty in such situations,

and more importantly to illustrate how a model of the predictive distribution may be exploited

in assessing the possible impacts of climate change and to improve current decision making

processes. The results of the WCCI-2006 predictive uncertainty in environmental modelling

challenge are also reviewed, suggesting a number of areas where further research may provide

significant benefits.

Keywords: Predictive uncertainty, environmental modelling, multi-layer perceptron, statis-

tics
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1 Introduction

Neural networks have been shown to provide a simple and flexible approach to a wide variety

of non-linear regression problems arising in the environmental sciences. Some recent applica-

tions include statistical downscaling (Harpham & Wilby, 2005), water level-discharge modelling

(Bhattacharya & Solomatine, 2005), river stage forecasting (Dawson et al., 2005) and air qual-

ity forecasting (Schlink et al., 2003). The presence of special sessions devoted to environmental

sciences and climate modelling at IJCNN-2005 and IJCNN-2006 provides further evidence of the

importance of this field of research. Environmental modelling problems are typically very noisy

and often characterised by a noise process that is heteroscedastic (i.e. the variance of the noise

process is input-dependent) and may also be non-Gaussian, for example the target data may be

strictly non-negative or highly skewed. Conventional neural network regression techniques aim to

estimate the conditional mean of the target data, via minimisation of a sum-of-squares error func-

tion. The aim of this paper is to demonstrate that practical benefits can be accrued by attempting

to model the entire conditional distribution of the noise contaminating the data in addition to the

conditional mean. For example, we may estimate the conditional variance of a Gaussian noise

process, which may be achieved by training a second regression network to predict the squared

residuals of the first (e.g. Nix & Weigend, 1994). The combined model provides a Gaussian pre-

dictive distribution indicating the relative plausibility of different values for the target function.

The provision of a predictive distribution, instead of only the conditional mean, can be exploited

in a number of ways:

• The predictive distribution implies a plausible interval (a.k.a. “error bars”) on all predictions,

which in turn provide a valuable indicator of the reliability of the model.

• An estimate of the predictive distribution allows the estimation of the true risk, i.e. we may

integrate the loss associated with all plausible outcomes, weighted by the probability of their

occurrence.

• Where a neural network is used as one component within a much larger model, the un-
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certainties associated with the inputs and outputs of each component, may be propagated

through the model (e.g. via a Monte-Carlo simulation) so that all sources of uncertainty can

be integrated over to obtain a moderated prediction.

• Often we are interested in predicting extreme events, especially the exceedance of some

arbitrary threshold, for instance predicting episodes of poor air quality. By their very na-

ture, extreme events are not modelled well by an estimate of conditional mean of the data,

and so a conventional sum-of-squares model will consistently under-predict extreme events.

However, given a full predictive distribution, we may at least estimate the probability of an

extreme event by integrating the upper tail of the predictive distribution, even if the estimate

of the conditional mean never exceeds the threshold.

Modelling predictive uncertainty in environmental data is also interesting from a machine learning

perspective as the noise processes involved are often non-Gaussian and/or heteroscedastic, and so

“off-the-shelf” solutions may not be entirely satisfactory, and thus there is significant scope for

further research.

The remainder of this paper is structured as follows: Section 2 describes the four benchmark

datasets used in the WCCI-2006 predictive uncertainty in environmental modelling challenge.

Section 3 presents a variety of conventional statistical approaches, and discusses the deviations

from the usual modelling assumptions often encountered in environmental modelling. Section 4

describes a simple methodology for estimating the predictive distribution based on methods de-

veloped by Peter Williams (Williams, 1991, 1995, 1996, 1998). Section 5 demonstrates that an

estimate of the predictive distribution can be exploited to provide practical benefits for the end-

user, via an illustrative (if a little contrived) example based on the estimation of insurance losses

associated with flood hazards. The results of the WCCI-2006 Predictive Uncertainty in Environ-

mental Modelling Competition, which aimed to stimulate research in this area, are presented in

Section 6. Section 7 discusses some areas where further research may provide significant benefits.

Finally, the work is summarised and conclusions draw in Section 8.
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2 Datasets

In this section, we describe the four benchmark datasets that were used in the WCCI-2006 predic-

tive uncertainty in environmental modelling challenge. These benchmarks are also used in this pa-

per to demonstrate the importance of estimating predictive uncertainty, especially for datasets char-

acterised by a non-Gaussian or heteroscedastic variance structure. These datasets are freely avail-

able from the challenge website (http://theoval.cmp.uea.ac.uk/∼gcc/competition/).

2.1 The SYNTHETIC Benchmark

A synthetic heteroscedastic regression problem, taken from Williams, 1996, provides a relatively

small dataset that can be easily visualised for the purposes of model development and for illustrat-

ing the importance of predictive uncertainty. As the true conditional mean and variance functions

are known, it is straight-forward to assess the quality of the model without direct access to the

test data. The univariate input patterns, x, are drawn from a uniform distribution on the interval

(0, π), the corresponding targets, y, are drawn from a univariate Normal distribution with mean

and variance that vary smoothly with x:

xi ∼U (0,π),

yi ∼N

(
sin
[

5x
2

]
sin
[

3x
2

]
,

1
100

+
1
4

[
1− sin

[
5x
2

]]2
)

.

Figure 1 shows a plot of the synthetic benchmark dataset, along with indications of the true condi-

tional mean and standard deviation. The heteroscedastic (input-dependent variance) nature of the

data is clearly evident.

[Figure 1 about here.]
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2.2 The SO2 Benchmark

The SO2 benchmark represents an atmospheric pollution forecasting problem, where the aim is

to predict 24 hours in advance the SO2 concentration in urban Belfast, based on meteorological

conditions and current SO2 levels (see Nunnari et al., 2004 for further details). The meteorological

conditions are important in this case as the air pollution problem in urban Belfast is largely due

to domestic (commonly coal-fired) heating, and so is at its worst during periods of cold weather.

Also high atmospheric pressure and temperature inversions tend to cause stagnant conditions and

consequently poor dispersion of atmospheric pollutants.

2.3 The PRECIP Benchmark

The PRECIP benchmark models a realistic statistical downscaling exercise, the aim of which is to

predict the (scaled) precipitation for Newton Rigg, a relatively wet station in the North-West of the

United Kingdom, using inputs representing large scale circulation features (see Cawley, Dorling,

Jones, & Goodess, 2003; Haylock, Cawley, Harpham, Wilby, & Goodess, 2006 for further details).

Figure 2 shows a histogram of the target data for the training set of the PRECIP benchmark,

highlighting a number of unusual features of this dataset. Firstly, the data is non-negative (it would

make little sense to talk of negative rainfall). Secondly, there is a large probability mass centred on

zero, representing the proportion of days where no rainfall occurs. Rainfall presents an example

of a mixed distribution, and is often modelled as separate occurrence and amount processes, where

the probability of rainfall is given by, e.g. a logistic regression model, and the amount of rainfall

given by a regression model fitted to the training data representing days where rainfall was actually

observed.

[Figure 2 about here.]
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2.4 The TEMP Benchmark

The TEMP benchmark problem is perhaps the most easily modelled of the real-world benchmark

problems, and again represents a downscaling problem, where the aim in this case is to model the

daily maximum temperature at the Writtle station in the South-East of the United Kingdom base

on similar large scale circulation features as those used for the PRECIP benchmark. In this case,

the data are reasonably well modelled by a conventional sum-of-squares regression model.

3 Conventional Statistical Approaches

The data encountered in environmental applications are typically characterised by deviations from

the basic assumptions underpinning least-squares regression methods commonly employed. These

may include a non-Gaussian noise process, heteroscedasticity (i.e. a noise process with input

dependent variance), the data may not represent a truly independent and identically distributed

sample (e.g. there may be temporal or spatial correlations). In this section, we review some meth-

ods from classical statistics used to counter some of these problems, illustrating each technique

using examples based on the four benchmark datasets.

3.1 Background

Suppose we have a dataset D = {(yi, xi)}`
i=1, comprised of ` observations on a set of random

variables Y, X = (X1, X2, . . . ,Xd). Our interest lies in predicting the Y values, the responses, given

the explanatory variables X , and so we seek to fit a predictive model to the available data. The best

point predictor of Y is given by ψ(X), the mean of the conditional distribution of Y given the X ′s.

That is

ψ(X) = E [Y | X ]
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This prediction is optimal in the sense that it minimises the expected squared error, such that

E
[
(Y −ψ(X))2]≤ E

[
(Y −θ(X))2]

for any function θ(·). The conditional mean function ψ(X) is called the regression function and we

can show that in the case where our variables Y and X have a joint multivariate Normal distribution

ψ is a linear function of the inputs (c.f. Rasmussen & Williams, 2006).

A conventional statistical approach normally begins by assuming that the responses are reali-

sations of a deterministic process, which can be represented by a linear function of the explanatory

variables, corrupted by zero mean Gaussian noise, with a fixed variance, i.e.,

yi = xT
i β + εi where εi ∼N (0,σ2). (1)

where β = (β1,β2, · · · ,βd) is a vector containing the coefficients of the linear regression model (we

assume that if an offset or bias term is required, it is implemented by adding a dummy explanatory

variable with a fixed non-zero value). Very often it is more convenient to think of a vector of

responses y = (y1, y2, . . . , yn)T in which case we have

y = Xβ + ε (2)

where X =
{

xi j
}i=`, j=d

i, j=1 is the `×d design matrix and ε = (ε1, ε2, . . . ,ε`). The regression coeffi-

cients are determined by minimising the sum-of-squares function

Q = (y−Xβ )T (y−Xβ ).

Using standard results we find the condition for a minimum is

XT X β̂ = XT y =⇒ β̂ = (XT X)−1XT y. (3)
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Assuming the errors are zero-mean (E[ε] = 0), and are uncorrelated with common variance σ2

(var(ε) = Σ = σ2I) and that the elements of the design matrix X are not stochastic, i.e. there is no

uncertainty in the measurement of the explanatory variables, then β̂ are also maximum likelihood

estimates. While the model provides a good point prediction for the target variable, we often

require an indication of the uncertainty of the predictions, in the form of a predictive distribution,

i.e. the distribution of plausible values for the response variable given the vector of observed

explanatory variables. In this case, a sensible choice would be

ŷi ∼N (xT
β̂ |σ̂2),

where

σ̂
2 =

1
N−d

(y−X β̂ )T (y−X β̂ )

is the optimal unbiased estimate of the variance of the noise process. Of course in reality many

of the problems we are interested in are concerned with non-normal data or violate some other

regression assumption. In the remainder of this section, we will describe some measures that can

be taken to deal with these deviations from the standard assumptions, with illustrations based on

the benchmark datasets.

3.2 Transformations of the Response Variable

A non-Gaussian noise process is a fairly common characteristic of environmental datasets, where

the response variable may be strictly non-negative (e.g. concentrations of atmospheric pollutants)

or highly skewed, or both. One approach to this problem is to transform the response data, for

example one might try a square root or logarithmic transformation. In many applications, the

responses exhibit a conditional variance that is dependent on the conditional mean, for instance

count data. In this case, the aim of a transformation is usually to stabilize the variance, i.e. make

it constant. For example the arcsin transform arcsin
√

x can be shown to make the variance of

Binomial variables constant. There are however rather more systematic approaches such as the
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Box-Cox transform (Box & Cox, 1964)

y(λ ) =

 (yλ
i −1)/λ λ 6= 0

log(yi) λ = 0

In the regression case Box and Cox suggest using the value of λ which gives the maximum of the

profile likelihood. Suppose yλ is the transformed value of the response and assume that yλ follows

a Normal linear model with parameters β and σ2 for some value of λ . Given a value of λ , we

can estimate the linear model parameters β and σ2 for transformed response yλ not y. For the

transformed response yλ , the log-likelihood is

`(β ,σ ,λ ) =−n
2

log(2πσ
2)− 1

2σ2 2
n

∑
i=1

(yλ
i −µi)2

and when we change variables to y the resulting log-likelihood is

`(β ,σ ,λ ) =−n
2

log(2πσ
2)− 1

2σ2 2
n

∑
i=1

(yλ
i −µi)+

n

∑
i=1

(λ −1) log(yi)

where the last term is Jacobian of the transformation. We can estimate β and σ2 for any fixed value

of λ by regressing the transformed response yλ on the inputs. Substituting the resulting maximum

likelihood estimates of β and σ2 we obtain the profile log-likelihood

`p(λ ) = C− n
2

log
(
σ̂

2
λ

)
+

n

∑
i=1

(λ −1) log(yi)

where C is a constant, not involving λ , It is common to work with

yλ
g = yλ

(
n

∏
i=1

yi

)−1/n

In this case it is easy to see that

`p(λ ) = C− n
2

log
(
σ̂

2
λ

)
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For a transformation we choose the λ that maximizes `p(λ ) and would normally plot the profile

likelihood to look at the region around the maximum.

An alternative to the Box-Cox form is the Yeo-Johnson power transformation (Yeo & Johnson,

2000). These transformations are defined as

ψ(λ ,y) =



(
(y+1)λ −1

)
/λ λ 6= 0, y≥ 0(

1− (1− y)2−λ

)
/(2−λ ) λ 6= 2, y < 0

− log(−y+1) λ = 2, y < 0

If y is strictly positive, then the Yeo-Johnson transformation is identical to the Box-Cox transfor-

mation. When Y is strictly negative it is identical to the Box-Cox transformation of (−y+1), with

power 2−λ . When y takes values of both sign then we have some problems in that we have differ-

ing transformations for different observations. As far as we are aware the difficulties encountered

in this case are not resolved and in consequence we prefr Box-Cox

3.2.1 Example - the SO2 Dataset

Consider the SO2 data, the raw histogram of the responses looks very skewed, as shown in Fig-

ure 3, and we suspect non-normality of the noise process. Note that in this case the response

variable represents the concentration of an atmospheric pollutant, and is strictly non-negative and

thus a Gaussian noise process is clearly unreasonable unless the variance of the noise is negligi-

ble in comparison to the magnitude of the conditional mean. Note that we seek a transformation

that makes the residuals of the model approximately normal, rather than merely the unconditional

distribution of the responses, shown in Figure 3. Some of the responses are zero, presumably as

the pollutant concentration was below the level that can be detected. If we replace these zeros

with the value 1.5, which is half the smallest non zero reading, we can try the Box-Cox trans-

formation. The profile likelihood is shown in Figure 4. The plot is peaked at a value very close

to zero, giving a strong indication that we should use a logarithmic transform. The histogram of

the transformed response variable is also shown in Figure 3, clearly a normal noise process is a
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more reasonable proposition for the transformed data. The predictive distribution must also be

transformed, to account for the transformation of the response, in this case giving a log-normal

predictive distribution.

[Figure 3 about here.]

[Figure 4 about here.]

3.3 The generalized linear model

An extension to the linear model, first proposed by Nelder in the mid 70’s is known as generalized

linear modelling (McCullagh & Nelder, 1989). The aim is to have a richer class of error distribu-

tions and to try and ensure that a linear combination of the predictors gives a reasonable model.

We cannot deal with all possible distributions for the noise process (and therefore the predictive

distribution) so we restrict ourselves to the exponential family. This is the family of distributions

whose density or probability functions are of the form

f (y : θ ,φ) = exp{(yθ −b(θ))/a(φ)+ c(y,φ)} (4)

here θ and φ are parameters of the distribution, while a(),b() and c() are known functions. Many

of the distributions encountered in environmental modelling belong to this family. Our interest is

the value of the canonical parameter θ (commonly the mean µ), and we regard φ as a nuisance

parameter. If we use standard distributional results it is easy to show that

E[y] = µ = b
′
(θ) (5)

and

var(y) = b
′′
(θ)a(φ) (6)

So we see that the variance is the product of two functions b
′′
(θ) and a(φ) which depends only on

φ . We can write the variance function as a function of the mean µ , say V (µ). It is common for
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the function a(φ) to take the form a(φ) = φ

w , where φ , called the dispersion parameter, is constant

over the data set and w is a known prior weight. The characteristics of some of the more important

members of the exponential family are as follows: For the normal distribution,

f (y) =
1√

2πσ2
exp
[
−(y−µ)2

2σ2

]
,

so in this parametrization a(σ) = σ2 and the nuisance parameter is σ . For the Gamma distribution,

we have

f (y) =
1

Γ(ν)

(
ν

µ

)ν

yν−1 exp
(
−νy

µ

)
This parametrization gives E[Y ] = µ and var[Y ] = µ2/ν , and it seems clear that a(ν) = 1

ν
. Lastly,

for the binomial distribution,

f (y) =
(

n
y

)
π

y(1−π)n−y y = 0,1, · · · ,n

Here we have only one parameter π and the dispersion is one, that is a(φ) = 1.

For the linear model we just equate the value of the predictor function, η , to the mean, µ ,

µ j = η j = xT
j β

For a generalized linear model we connect the mean and the predictor by a monotone link function

g(·),

g(µ j) = η j = xT
j β

While from the technical statistical view there is much to be said for the canonical link1, there is

no a-priori reason why this link is appropriate for a particular data set. The link function is chosen

to ensure additivity and linearity of the explanatory variables. This choice is part of the modelling

process. All the distributions that we commonly use have special canonical link functions, those

1Using the canonical link, the partial derivative of the negative log-likelihood with respect to ηi is given by yi−
g(ηi), simplifying the optimisation procedure used to fit the model.
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of interest to this study are set out in Table 1.

[Table 1 about here.]

3.3.1 Example - the Precipitation Dataset

The precipitation data is interesting in that the responses are the product of an occurrence process,

which decides whether or not there is any rainfall on a particular day, and an amount process,

which governs the amount of rainfall, given that some rainfall is observed. A reasonable approach

to this model is to assign a probability, π , to the event that it rains and then consider the amount of

rain, X , given it has rained, using separate models. We have now estimated our distribution with a

probability 1−π at zero and a distribution π f (x | rain ) elsewhere. Our approach is therefore

1. To use a logistic model to estimate the probability of rain π . That is

log
(

πi

1−πi

)
= xT

i β .

Here the xT
i are the inputs. This is a standard problem as the rain, no rain dichotomy gives

us a series of Bernoulli trials.

2. We now look at days with rain and model the amounts using a Gamma generalized linear

model. We choose the Gamma as it appears to provide a reasonable fit to the data and we

are advised by those who study precipitation that a Gamma distribution is appropriate. Here

we have used a log link as it gives a better model, so

ηi = log(µi) = xT
i β .

The error distribution being Gamma, that is

f (y,µ,ν) =
1

Γ(ν)y

(
νy
µ

)ν

exp
(
−νy

µ

)
.
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3.4 Dispersion Models

It is possible to modify our approaches to both the normal regression and the generalized model

case to allow for non-constant (heteroscedastic) variances. The normal case uses an algorithm

suggested by Aitken, 1987. If we have d predictors x and a response y we can, as a model assume

E[y|x] = β
T x and var(y|x) = exp(γT x).

where the coefficients of the models of the conditional mean and conditional variance, β
T and

γT respectively, are estimated separately. The fitting procedure alternates between updates of the

model of the conditional mean, by fitting β via weighted least-squares with weights exp(−γT x),

and updates of the model of the conditional variance, fitting a Gamma model to the square residuals

r with scale factor 2. The algorithm begins by assuming constant variance, i.e. γ = 0, and is

repeated until convergence is obtained. In the generalised linear model case we can follow a

similar procedure. Suppose we write µi = E[yi] for the expectation of the ith response. Then we

know from the structure of generalized linear models that Var(yi) = φiV (µi) where V is the variance

function and φi is the dispersion of the ith response. We now assume the linked linear models

g(µi) = xT
i β and h(φi) = zT

i γ

with linear and exponential link functions, g(z) = z and h(z) = exp(z) respectively. The parameters

β are estimated as for a standard generalized linear model. The parameters γ are estimated by way

of a dual generalized linear model, in which the deviance components of the ordinary generalized

linear model appear as responses. The estimation procedure alternates between one iteration for

the mean submodel and one iteration for the dispersion submodel until we have convergence.
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3.4.1 Example: The Synthetic Dataset

Looking at the synthetic data, as shown in Figure 1, it is immediately apparent that we have non-

constant variance and that the conditional mean is a non-linear function of the explanatory variable.

In this case, the variance of the target distribution is not a simple function of the mean and so

a Box-Cox transformation is not helpful here. However, the noise process is Gaussian, albeit

heteroscedastic, and so Aitken’s dispersion model is highly appropriate. As the conditional mean

and variance of the response variable are non-linear functions of the single explanatory variable,

we fit a polynomial model by augmenting the input vector such that x = (x, x1, x2, . . . , x7, 1),

including a bias term. The fitted conditional means and variances are shown in Figure 5.

[Figure 5 about here.]

3.5 Quantile Regression

An alternative approach to modelling predictive uncertainty seeks to model the predictive distribu-

tion directly rather than assume a particular parametric form. This can be achieved by forming a

predictive model estimating the quantiles of the target distribution. Just as minimising the sum-of-

squares error leads to estimation of the conditional mean of the target distribution, a linear model

fitted via minimisation of the sum-of-absolute errors,

1
`

`

∑
i=1
|yi− ŷi|

can be shown to estimate the conditional median of the responses. This approach can be gener-

alised to provide the qth quantile, by differentially weighting positive and negative errors, according

to
1
`

`

∑
i=1

ψ(ŷi,yi)
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where

ψ(ŷ,y) =

 (1−q)(ŷ− y) if ŷ > y

q(yi− ŷ) otherwise

This approach is known as quantile regression (Koenker, 2005).

3.5.1 Example : The SYNTH Benchmark

Figure 6 shows (a) the conditional median and (b) conditional deciles (q = 0.1,0.2, . . . ,0.9) of the

synthetic benchmark dataset. While the conditional median is useful in that it provides a more

robust estimate of central tendency (in the sense that the mean absolute error is less sensitive to

outliers than the mean squared error), the conditional deciles provide a useful (if somewhat coarse)

indication of the shape of the target distribution.

[Figure 6 about here.]

4 Modelling Predictive Uncertainty with Neural Networks

In this section, we outline a neural network approach to modelling predictive uncertainty in envi-

ronmental applications, based on a sound Bayesian methodology developed by Williams (Williams,

1991, 1995, 1996, 1998). For this study, we adopt the familiar Multi-Layer Perceptron network

architecture (see e.g. Bishop, 1995). The optimal model parameters, w, are determined by gra-

dient descent optimisation of an appropriate error function, ED , over a set of training examples,

D = {(xi, ti)}N
i=1 , xi ∈ X ⊂ Rd, ti ∈ R, where xi is the vector of explanatory variables and ti is

the desired output for the ith training pattern. The error metric most commonly encountered in

non-linear regression is the sum-of-squares error, given by

ED =
1
2

N

∑
i=1

(yi− ti)2, (7)
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where yi is the output of the network for the ith training pattern. In order to avoid over-fitting to

the training data, however, it is common to adopt a regularised (Tikhonov & Arsenin, 1977) error

function, adding a term EW penalising overly-complex models, i.e.

M = αEW +βED , (8)

where α and β are regularisation parameters controlling the bias-variance trade-off (Geman, Bi-

enenstock, & Doursat, 1992). Minimising a regularised error function of this nature is equivalent to

the Bayesian approach which seeks to maximise the posterior density of the weights (e.g. MacKay,

1992b; Neal, 1996), given by

P(w | D) ∝ P(D | w)P(w),

where P(D | w) is the likelihood of the data and P(w) is a prior distribution over w. The form of

the functions ED and EW correspond to distributional assumptions regarding the data likelihood

and prior distribution over network parameters respectively. The usual sum-of-squares metric (7),

corresponds to a Gaussian likelihood,

P(D | w) =
1√

2πβ−1
exp
{
− [ti− y(xi)]2

2β−1

}

with fixed variance σ2 = 1/β . Here, we adopt the Laplace prior propounded by Williams, 1995,

which corresponds to a L1 norm regularisation term,

EW =
W

∑
i=1
|wi|. ⇐⇒ P(w) =

1
2β

exp
{
−|w|

β

}

where W is the number of model parameters (i.e. weights). An interesting feature of the Laplace

regulariser is that it leads to the automatic pruning of redundant model parameters. From (8), at a

minimum of M we have

∣∣∣∣∂Ey

∂wi

∣∣∣∣= α

β
wi > 0,

∣∣∣∣∂Ey

∂wi

∣∣∣∣< α

β
wi = 0.
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As a result, any weight not obtaining a data misfit sensitivity of α/β is set exactly to zero and can

be pruned from the network.

4.1 Eliminating Regularisation Parameters

The hyper-parameters α and β can be estimated by maximising the evidence (MacKay, 1992b) or

alternatively may be integrated out analytically (Buntine & Weigend, 1991; Williams, 1995). Here

we take the latter approach; the posterior distribution of the parameters is given by

p(w) =
∫

p(w|α)p(α)dα. (9)

Assuming the Laplace prior, the prior distribution over the weights of the network, conditioned on

the regularisation parameter α , is given by,

p(w|α) = ZW (α)−1 exp{−αEW } (10)

where the necessary normalising constant is given by

ZW (α) =
(

2
α

)W

. (11)

Substituting equations (10) and (11) into equation (9), adopting the (improper) uninformative Jef-

freys prior, p(α) = 1/α (Jeffreys, 1939), and noting that α is strictly positive,

p(w) =
∫

∞

0
2−W

α
W−1 exp{−αEW }dα.

Using the Gamma integral,
∫

∞

0 xν−1e−µxdx = Γ(ν)
µν (Gradshteyn & Ryzhic, 1994, equation 3.384),

we obtain

p(w) =
Γ(W )

(2EW )W .
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Taking the negative logarithm and omitting irrelevant constant terms,

− log p(w) = W logEW . (12)

Applying a similar treatment to the data misfit term (assuming a sum-of-squares error), we have

L =
1
2

N logED +W logEW .

For a network with more than one output unit, it is sensible to assume that each output has a

different noise process (and therefore a different optimal value for β ). It is also sensible to assign

hidden layer weights and weights associated with each output unit to different regularisation classes

so they are regularised separately. This leads to the training criterion used in this study:

L =
N
2

O

∑
i=1

logE i
D +

C

∑
j=1

Wj logE j
W ,

where O is the number of output units, C is the number of regularisation classes (groups of weights

sharing the same regularisation parameter) and Wj is the number of non-zero weights in the jth

class. Note that bias parameters are not normally regularised. This approach provides a sound

basic approach to non-linear regression using multi-layer perceptron networks, with Bayesian reg-

ularisation to prevent over-fitting and automatic selection of an appropriate network architecture

as a result of the Laplace prior. As the regularisation parameters are integrated out analytically, the

user need only select the initial number of hidden layer units, and more importantly an appropri-

ate data misfit term that represents any available prior knowledge regarding the form of the noise

process contaminating the data. Using a large number of hidden units in the initial network helps

to avoid local minima, as it increases the probability of starting with hidden layer units that ap-

proximate useful features of the data, but of course increases training time. A useful rule of thumb

is to experiment with the initial size of the hidden layer until the Laplace prior on average prunes

approximately half of them away. This ensures that the hidden layer will be large enough, without
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undue computational expense. Otherwise, the network architecture is automatically determined by

the Bayesian regularisation scheme.

4.2 Choice of Data Misfit Term

In this paper, we are concerned with modelling predictive uncertainty, and so rather than simply

estimating the conditional mean of the target data, we seek to construct a model such that the output

specifies the entire predictive distribution. A sensible first step in solving an inference problem is to

select an appropriate likelihood function to describe the statistical properties of the target data (c.f.

MacKay & Gharahmani, 2005). The training criterion for the neural network should then be based

on the negative logarithm of a parametric likelihood function, that incorporates any distributional

assumptions regarding the noise process suggested by our prior knowledge of the data. In order

to obtain a predictive distribution, we simply construct a network with one output for each of the

parameters of this likelihood.

The most basic likelihood, providing a measure of the data misfit, used in this study, assumes

a heteroscedastic (input dependent variance) Gaussian noise process, i.e.

ED =
`

∑
i=1

{
logσ(xi)+

[µ(xi)− ti]2

2σ2(xi)

}
. (13)

Note the multi-layer perceptron network now has two output units, one giving the conditional mean

of the target distribution, µ(x), as before, and an additional unit giving the conditional standard

deviation, σ(x). A linear activation function is used in the output unit corresponding to µ(x), and

an exponential activation function for the unit corresponding to σ(x), to enforce strictly positive

estimates of conditional variance. This approach provides two advantages: Firstly the estimates

of conditional variance provide error bars, indicating the uncertainty of model predictions (Nix

& Weigend, 1994, 1995; Williams, 1996). Secondly the output of the model now completely

specifies the target distribution, so the regularisation parameter β is no longer necessary. This data-

misfit term is appropriate for regression on temperature data, where a Gaussian noise process is
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intuitively reasonable, but where the variability in temperature as well as the expected temperature

may depend on, for example, the time of year.

The concentration of atmospheric pollutants provides an example of a type of data where a

more complex likelihood may be appropriate. Clearly a pollutant concentration cannot be neg-

ative, and the uncertainty in predictions is likely to be skewed upward. A common ploy would

be to implement a log-normal likelihood, by simply taking the logarithm of the target data and

employing the data misfit given in (13).

Modelling frontal precipitation data requires a more sophisticated statistical model, and is often

modelled using a Gamma distribution (Stern & Coe, 1984) or a mixture of exponentials (Woolhiser

& Pegram, 1979). In this paper we adopt the hybrid Bernoulli/Gamma error metric proposed by

Williams, 1998. The distribution of the amount of precipitation, X , is modelled by

P(X > x) =

 1 if x < 0

αΓ
(
ν , x

θ

)
if x≥ 0

(14)

where 0 ≤ α < 1, ν > 0, θ > 0 and Γ(ν ,z) is the (upper) incomplete Gamma function, Γ(ν ,z) =

Γ(ν)−1 ∫ ∞

z yν−1e−ydy. The model is then trained to approximate the conditional probability of rain-

fall α(xi) and the scale, θ(xi), and shape, ν(xi), parameters of a Gamma distribution modelling the

predictive distribution of the amount of precipitation. Logistic and exponential activation functions

are used in output layer neurons to ensure that the distributional parameters satisfy their respective

constraints.

5 Exploiting Predictive Uncertainty

Environmental modellers are commonly interested in the impacts of extreme events, for example

the impact of changes in future climate on local rainfall and subsequently on the flood hazard in

susceptible catchments. General circulation models are considered to provide the best basis for

estimating future climates that might result from anthropogenic modification of the atmospheric
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composition (i.e., the enhanced greenhouse effect). However, output from these models cannot

be widely or directly applied in many impact studies because of their relatively coarse spatial

resolution. The mismatch in scales between model resolution and the increasingly small scales

required by impacts (e.g., agriculture and hydrology) analyses can be overcome by downscaling.

Two major approaches to downscaling, statistical and dynamical (the latter using physically-based

regional climate models), have been developed and tested in recent years, and shown to offer good

potential for the construction of high-resolution scenarios of future climate change (Hewitson &

Crane, 1996; Wilby et al., 1998; Giorgi & Mearns, 1999; Zorita & Storch, 1999). Statistical

downscaling methods seek to model the relationship between large scale atmospheric circulation,

on say a European scale, and climatic variables, such as temperature and precipitation, on a regional

or sub-regional scale, based on the historical record. Downscaling is an important area of research

as it bridges the gap between predictions of future circulation generated by General Circulation

Models (GCMs) and the effects of climate change on smaller scales, which are often of greater

interest to end-users.

In order to estimate the impacts of changes in future climate on flood hazard, the predictions of

a general circulation model are downscaled to provide predictions of future precipitation patterns,

which in turn are processed by a hydrological model to assess the effect of changes in rainfall

patterns on water-levels in the river fed by the catchment being studied. In this example, we will

consider a fictitious catchment2 in which there is a flood hazard if the three-day total precipitation

is in excess of 35 cm. Figure 7 shows a plot of the financial loss associated with flood events as

a function of the three-day total precipitation; the loss is modelled as a a constant component that

is incurred whenever the river is unable to contain the run-off, and a component that reflects the

additional damage resulting from increasingly severe flood events.

[Figure 7 about here.]

Figure 8 shows the three-day total precipitation time series for the study catchment area for the

2The results are actually based on downscaled predictions for a real precipitation time series data from Newton
Rigg, a rather wet station in the North West of the United Kingdom.
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period 1979-1993. Note that many of the apparent dry spells are caused by missing data in the

historical record rather than the absence of precipitation and are not included in the analysis. The

measured loss for the observed time series is 49.02 units.

[Figure 8 about here.]

Figure 9 shows the predicted three-day total precipitation based on a conventional neural net-

work downscaling model trained to estimate the conditional mean of the target distribution. The

network was trained on two segments of the precipitation time series spanning the periods 1961–

1978 and 1994–2000. Note that the conditional mean systematically under-predicts the extreme

rainfall events, as the predictive distribution is highly skewed. As a result, the predicted loss

according to the simple neural network downscaling model is only 8.22 units, which severely

under-estimates the true loss.

[Figure 9 about here.]

A second neural network downscaling model was trained, this time using the hybrid Bernoulli/Gamma

data misfit term (14). In this case, the model has three outputs, one supplies an estimate of the prob-

ability of rainfall and two that define a Gamma distribution modelling the plausibility of different

amounts of rainfall. As this model provides a full probabilistic prediction, it is possible to generate

synthetic precipitation time series, using the neural network as a conditional weather generator

model. In order to infer the expected loss associated with the flood hazard, a Monte Carlo sim-

ulation is conducted using 100,000 synthetic precipitation time series generated by the network.

Figure 10 shows a histogram of the measured losses from the Monte Carlo simulation, clearly the

actual loss of 49.02 units is plausible, given the prediction distribution of loss. The expected loss,

via Monte-Carlo integration, is 70.72 units, which is much closer to the recorded loss.

[Figure 10 about here.]

While this example is deliberately somewhat contrived, it does demonstrate that a probabilistic

characterisation of the uncertainty of model predictions can be exploited in impact studies, espe-

cially where the principal focus lies on the implications of extreme events, which by their very
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nature are not modelled well by the conditional mean. The integration over sources of uncertainty

also provides the results in a format that is well suited to the needs of end-users, such as govern-

ment institutions or the insurance industry. Clearly the distribution of plausible losses is exactly

the information required by such users for well-informed policy-making and forward planning.

6 The Predictive Uncertainty in Environmental Modelling Chal-

lenge

The WCCI-2006 predictive uncertainty in environmental modelling challenge consisted of one

SYNTHETIC benchmark dataset and three real-world environmental datasets PRECIP, SO2 and

TEMP. The format of the competition was based closely on the regression problems of the earlier

Pascal predictive uncertainty challenge. The negative log-likelihood of the test data was used

as the performance criterion for the final ranking of submissions, as it is the natural measure of

the fit of a distribution to a set of data. Two standard methods were available for describing the

predictive distribution for each pattern, the mean and variance of a Gaussian predictive distribution,

or a set of quantiles, allowing the definition of an arbitrary predictive distribution3. An unusual

feature of the competition is that the competitors had the option of suggesting alternate forms

for specifying the predictive distribution (as the likelihood can be described in any number of

parametric forms). A mixture Gaussian option was added at a late stage in the competition in

response to a request from one of the competitors. The target data for all three of the real-world

environmental benchmark datasets are (finely) quantised, for example precipitation data is only

measured to the nearest 0.1 mm. In principle it would therefore be possible to make the negative

log-likelihood arbitrarily low by specifying the predictive distribution (via quantiles) as a set of

delta functions centred on the quantised values. This technique was employed by some entries

to the original Pascal predictive uncertainty challenge. In order to prevent this, the minimum

3The computation of the negative log likelihood using these representations is dis-
cussed in detail on the website for the original Evaluating Predictive Uncertainty Challenge,
http://predict.kyb.tuebingen.mpg.de/pages/evaluation.php
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allowable width of the quantiles (and similarly the variances of the individual components of a

mixture Gaussian predictive distribution) were limited to match the quantisation interval used.

6.1 Reference Submissions

Three baseline models were submitted for each dataset, which gave a fixed predictive distribution

for all patterns: Baseline #1 - fixed Gaussian predictive distribution specified via the uncondi-

tional mean and variance of the target data, Baseline #2 - fixed Gaussian distribution specified

as a set of quantiles and Baseline #3 - fixed predictive distribution specified by quantiles rep-

resenting the empirical distribution of the target data. A fourth baseline model was created for the

SO2 benchmark, giving a fixed predictive distribution for all patterns based on a Gaussian mixture

model of five components, fitted using the standard Expectation Maximisation (EM) algorithm

(Dempster, Laird, & Rubin, 1977), as implemented by the NETLAB package (Nabney, 2004). In

addition to these baseline models, neural network models were also submitted for each benchmark,

the training procedure used is described in Section 4. A heteroscedastic Gaussian data mis-fit term

(13) was used for the SYNTHETIC and TEMP benchmarks, a heteroscedastic log-normal term for

the SO2 benchmark and the hybrid Bernoulli/Gamma term (14) term for the PRECIP benchmark.

In order to avoid training difficulties due to local minima of the cost function, 20 models were

trained in each case, with randomly initialised weights, and the model giving the lowest value for

the regularised loss retained. These models provide an indication of the “minimum” and “compet-

itive” levels of performance for each benchmark.

Table 2 shows the negative log of the estimated density of the true labels (NLPD), i.e. the

negative log-likelihood, of the training and test sets of the SYNTHETIC benchmark for selected

entries. It can be seen that many of the entries were able to make clear improvements in modelling

the predictive distribution over the baseline models, with the best models approaching the perfor-

mance of the optimal “ground truth” model used to generate the data. However, the SYNTHETIC

benchmark is relatively straight-forward, the only unusual feature being the heteroscedasticity of

the noise process. The best models all include an explicit model of the variance of the target
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distribution.

[Table 2 about here.]

Table 3 shows the results obtained by leading entries to the challenge. In this case the use of a

sum-of-squares model, with a normal predictive distribution, performs very poorly as it is unable

to account for the peak in the true probability density function caused by the days on which no

rainfall was observed.

[Table 3 about here.]

Table 4 shows the test set mean-squared error and negative log likelihood for selected models

over the SO2 benchmark. Clearly this is the noisiest of the benchmark datasets, and while some

reduction in the mean-squared-error is possible, it is difficult to produce a model that improves on

the baseline models in terms of the quality of the predictive distribution.

[Table 4 about here.]

In this case a heteroscedastic Gaussian noise process is a reasonable assumption. Table 5

shows the test set MSE and NLPD statistics for selected models, in almost all cases the models

significantly improve on the baseline models in terms of the NLPD.

[Table 5 about here.]

The final standings in the competition, decided by mean NLPD score over the three environ-

mental datasets, are shown in Table 6. The overall winner is Markus Harva. This criterion is a

natural choice as it represents the joint likelihood of all of the data, given the models.

[Table 6 about here.]
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7 Areas for Further Research

7.1 Inherent Bias in the Conditional Variance

It is well known that estimates of the conditional variance are likely to be significantly biased. If

the model of the conditional mean over-fits the data, this reduces the apparent local noise density,

and so error bars based on the conditional variance will be unrealistically narrow. This problem has

previously been addressed via Bayesian approaches (Bishop & Qazaz, 1996; Goldberg, Williams,

& Bishop, 1998), and by the use of leave-one-out cross-validation (Cawley, Talbot, Foxall, Dorling,

& Mandic, 2004). However these approaches are currently only suitable for relatively small scale

applications, with only a few thousands of training patterns. Further research is needed to develop

large scale algorithms suitable for environmental applications, where much larger amounts of data

are typically available.

7.2 Incorporating the Uncertainty in the Model Parameters

In this paper we have reviewed the use of maximum-likelihood based loss functions for neural

networks, which allow us to incorporate prior knowledge regarding the uncertainty in model pre-

dictions due to the inherent noise process contaminating the data. Another important source of

uncertainty lies in the uncertainty due to the estimation of the model parameters from a finite sam-

ple of data. It seems likely that a better model of the predictive distribution might be obtained by

including this effects of the uncertainty in the model parameters, e.g. via the Laplace approxima-

tion (MacKay, 1992a, 1992b) or via Markov-Chain Monte Carlo methods (Neal, 1996).

7.3 The Form of the Predictive Distribution

While expert knowledge is sometimes available regarding the form of the noise process contami-

nating the data, it would be useful also to have a data-driven approach, where the form of the noise

process is also inferred from the training data. The mixture density network (Bishop, 1994), where
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the outputs of the model specify the components of a Gaussian mixture model of the predictive

distribution, represents the most basic approach. The warped Gaussian Process, (Snelson, E., &

Ghahramani, 2004), in which the observation space is transformed so as to be well modelled as a

Gaussian process, represents a more recent approach.

8 Conclusions

In this paper we have demonstrated that a model of the predictive distribution can be exploited

in studies of the impacts of changes in future climate, via a somewhat contrived, but nevertheless

illustrative example. An on-line competition has been organised in an attempt to promote research

on methods for estimating the uncertainty inherent in statistical predictions. The results demon-

strate that this is a difficult topic, where standard approaches do not yield uniformly good results.

We hope that the competition has gone some way to highlight an area where further research is

likely to produce practical benefits in the analysis of environmental data.
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Figure 1: Plot of the training data for the SYNTHETIC benchmark dataset, along with an indication
of the true conditional mean, µ(x) and conditional standard deviation, σ(x).
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Figure 2: Histogram of the target data for the training set of the PRECIP benchmark dataset.
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Figure 3: Histograms of the raw and transformed response variable for the SO2 dataset.
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Figure 4: Profile likelihood for the SO2 benchmark, using the Box-Cox transformation to improve
normality.
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Figure 5: Fitted values for the conditional mean and variances of the synthetic benchmark using
Aitken’s dispersion model.
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Figure 6: Fitted values for the conditional median and deciles of the synthetic benchmark using
quantile regression.
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Figure 7: Financial loss associated with flood events in a susceptible catchment as a function of
the three-day total precipitation.
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Figure 8: Three-day total precipitation time series for a catchment area susceptible to flooding.
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Figure 9: Predicted three-day total precipitation time series for a catchment area susceptible to
flooding, using a neural network providing the conditional mean of the target distribution.
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Figure 10: Distribution of expected financial loss associated with flood events in a susceptible
catchment.



Predictive Uncertainty in Environmental Modelling 45

List of Tables
1 Canonical links for common distributions . . . . . . . . . . . . . . . . . . . . . . 46
2 Training and test set negative log-likelihood statistics for the SYNTHETIC bench-

mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Test set mean-squared error (MSE) and negative log-likelihood (NLPD) statistics

for the PRECIP benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Test set mean-squared error (MSE) and negative log-likelihood (NLPD) statistics

for the SO2 benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Test set mean-squared error (MSE) and negative log-likelihood (NLPD) statistics

for the TEMP benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Final standings in the competition - the overall winner, decided by mean NLPD

score, is Markus Harva. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Predictive Uncertainty in Environmental Modelling 46

Table 1: Canonical links for common distributions

Distribution Link
Normal η = µ

Poisson η = log(µ)
Binomial η = log{π/(1−π)}
Gamma η = µ−1

Inverse Gaussian η = µ−2
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Table 2: Training and test set negative log-likelihood statistics for the SYNTHETIC benchmark.

Name Method Train Test
NLPD NLPD

Reference ground truth 0.3333 0.3489
Harva varmlp (MoG) 0.3251 0.3858
Cawley MLP 0.3083 0.4046
Kurogi et al. CAN2 ensemble + CV 0.2236 0.4304
Boardman Support Vector Regression 0.4150 0.4745
Nikulin CM+GbO 0.3590 0.4805
Bagnall YJ 1.0081 1.0313
Reference Baseline #1 1.1064 1.1357
Reference Baseline #2 1.1104 1.1374
Reference Baseline #3 0.7923 1.2324
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Table 3: Test set mean-squared error (MSE) and negative log-likelihood (NLPD) statistics for the
PRECIP benchmark.

Name Method MSE NLPD

Cawley MLP 0.6305 -0.5095
Harva varmlp 5.4493 -0.2792
Reference Baseline #1 1.0002 -0.1772
Takeuchi Kernel QR 0.6109 0.7469
Bagnall YJ 2.1072 1.1139
Nikulin CM+GbO 0.6539 1.2724
Boardman Support Vector Regression 0.6441 1.6055
Reference Baseline #2 1.0001 2.0346
Reference Baseline #3 1.0001 2.0496
Kurogi et al. CAN2 ensemble + CV + 0.6465 3.0982

hetero + quantile
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Table 4: Test set mean-squared error (MSE) and negative log-likelihood (NLPD) statistics for the
SO2 benchmark.

Name Method MSE NLPD

Cawley MLP 0.7985 4.2550
Harva varmlp 0.8333 4.3702
Reference Baseline #4 1.0000 4.4964
Reference Baseline #1 1.0001 4.4968
Nikulin CM+GbO 0.8576 4.6162
Bagnall YJ 1.7598 4.7578
Boardman Support Vector Regression 0.8396 5.0897
Reference Baseline #3 1.0000 5.1655
Reference Baseline #2 1.0000 5.2181
Takeuchi Kernel QR 0.6884 6.0425
Kurogi et al. CAN2 ensemble + CV + 0.7807 11.0063

hetero + quantile
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Table 5: Test set mean-squared error (MSE) and negative log-likelihood (NLPD) statistics for the
TEMP benchmark.

Name Method MSE NLPD

Snelson Sparse pseudo-input 0.0661 0.0348
Gaussian process (SPGP)

Cawley MLP 0.0693 0.0530
Kurogi et al. CAN2 ensemble + CV + 0.0681 0.0591

hetero + quantile + outlier
Boardman Support Vector Regression 0.0709 0.0760
Nikulin CM+GbO 0.0729 0.1076
Bagnall Linear Regression 0.077432 0.136235
Harva varmlp 0.0925 0.2015
Whittley QuantLin 24.9839 0.6251
Reference Baseline #1 1.0000 1.3004
Reference Baseline #2 1.0000 1.4151
Reference Baseline #3 1.0000 1.4177
Takeuchi Kernel QR 0.0965 24.7922
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Table 6: Final standings in the competition - the overall winner, decided by mean NLPD score, is
Markus Harva.

Name PRECIP SO2 TEMP Mean

Cawley -0.5095 4.2550 0.0530 1.2661
Harva -0.2792 4.3702 0.2015 1.4308
Nikulin 1.2724 4.6162 0.1076 1.9987
Bagnall 1.1139 4.7578 0.1362 2.0026
Boardman 1.6055 5.0897 0.0760 2.2571
Kurogi et al. 3.0982 11.0063 0.0591 4.7212
Takeuchi 0.7469 6.0425 24.7922 10.5272
Whittley ∞ ∞ 0.6251 ∞

Snelson ∞ ∞ 0.0348 ∞


