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Abstract

In this paper we extend a form of kernel ridge regression for data characterised
by a heteroscedastic (i.e. input dependent variance) Gaussian noise process, intro-
duced in Foxall et al. [1]. It is shown that the proposed heteroscedastic kernel ridge
regression model can give a more accurate estimate of the conditional mean of the
target distribution than conventional kernel ridge regression and also provides an
indication of the spread of the target distribution (i.e. predictive error bars). The
leave-one-out cross-validation estimate of the conditional mean is used in fitting the
model of the conditional variance in order to overcome the inherent bias in maxi-
mum likelihood estimates of the variance. The benefits of the proposed model are
demonstrated on synthetic and real-world benchmark data sets and for the task of

predicting episodes of poor air quality in an urban environment.
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It is well known that minimisation of a sum-of-squares error (SSE) metric cor-
responds to maximum likelihood estimation of the parameters of a regression
model, where the target data are assumed to be realisations of some deter-
ministic process that have been corrupted by additive Gaussian noise with
constant variance (i.e. a homoscedastic noise process) (e.g. Bishop [2]). The
least-squares support vector machine [3], kernel ridge-regression [4, 5] and reg-
ularisation network [6] form a family of closely related techniques that imple-
ment non-linear regression using a linear model constructed in a fixed feature
space induced by a Mercer kernel, minimising a regularised sum-of-squares er-
ror criterion. In this paper, we extend this family to include a formulation that
is optimal for a Gaussian noise process with input-dependent (heteroscedas-
tic) variance. Linear models are constructed in a kernel induced feature space,
estimating both the conditional mean and conditional variance of the tar-
get distribution, using a regularised maximum likelihood criterion [7-9]. This
results in both robust estimates of the conditional mean and also a more real-
istic credible interval on predictions (i.e. predictive error bars). Furthermore,
we overcome a major shortcoming of existing approaches, by adopting the
leave-one-out cross-validation estimate of the conditional mean in fitting the
model of the conditional variance, resulting in unbiased predictive error bars.
The form of the model of the conditional mean allows a particularly efficient
closed-form implementation of the leave-one-out procedure. We then apply
the proposed method to synthetic and real-world benchmark datasets, and to

the practical problem of predicting episodes of poor air quality, in terms of
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both an estimate of the concentration of a given pollutant and an estimate
of the probability that the predicted concentration exceeds a given statutory

threshold level.

The remainder of this paper is organised as follows: The conventional ho-
moscedastic kernel ridge regression algorithm is briefly described in section 1,
introducing the notation used throughout. Section 2 introduces a heteroscedas-
tic form of the kernel ridge regression algorithm, with an efficient training al-
gorithm given in section 3. The elimination of the bias inherent in estimation
of the conditional variance is discussed in section 4. Section 5 evaluates the
conventional and heteroscedastic kernel ridge regression algorithms on a syn-
thetic dataset (demonstrating that the estimates of conditional variance are
approximately unbiased), the well-known motorcycle benchmark dataset and
for predicting episodes of poor air quality in urban environments. Finally the

proposed approach is summarised in section 6.

1 Kernel Ridge Regression

Ridge regression [4] is a well known technique from classical multiple linear re-
gression that implements a regularised form of least-squares regression. Given

training data,
D={zy},, T€XCRY, y€cYCR,

the ridge regression algorithm determines the parameter vector, w € R?%, and

bias, b € R, of a linear model, f(x) = w -  + b, via minimisation of the



following objective function:

4

Llw,b) = 5wl + F (0~ w- @i~ b )

Clearly the objective function used in ridge regression (1) implements a form
of Tikhonov regularisation [10] of a sum-of-squares error metric, where = is a
regularisation parameter controlling the bias-variance trade-off [11]. This cor-
responds to penalised maximum likelihood estimation of w and b, assuming
the targets have been corrupted by an independent and identically distributed
(i.i.d.) sample from a Gaussian noise process, with zero mean and fixed vari-
ance o2, i.e.

yi=w-xi+b+e, e~N(00%).

A non-linear form of ridge regression, known as kernel ridge regression [5], can
be obtained via the so-called “kernel trick”, whereby a linear ridge regression
model is constructed in a high dimensional feature space, F (¢ : X — F),
induced by a non-linear kernel function defining the inner product K(z, z') =
¢(x)- p(x'). The kernel function, K : X x X — R may be any positive definite
“Mercer” kernel (for an overview of kernel learning methods, including kernel
ridge regression, see Cristianini and Shawe-Taylor [12]). The objective function

minimised in constructing a kernel ridge regression model is given by

L(w,b) = —||w||2 72 —w- (i) — b2

The representer theorem [13] states that the solution of an optimisation prob-
lem of this nature can be written in the form of a linear combination of the
training patterns, i.e. w = Y°_; a;¢(x;). The output of the least-squares sup-

port vector machine is then given by the kernel expansion

J4

f(cc) = Z ailC(:ci, w) -+ b.

=1



It can easily be shown [5,14] that the optimal coefficients of this expansion

are given by the solution of a set of £+ 1 linear equations in ¢ 4+ 1 unknowns:

21| |« Y
10| | b 0

where Q = K + ¢y 'I, K = [kij = K(w,2;)]¢,_;, I is the £ x £ identity

matrix, ¥y = (y1,%2,...,%)", @ = (a1, as,...,a0)" and 1 = (1,1,...,1)T.

2 Heteroscedastic Kernel Ridge Regression

Suppose we are given a dataset D where the targets, y;, are assumed to be cor-
rupted by an independent and identically distributed? (i.i.d.) sample drawn
from a Gaussian noise process with a mean of zero and input dependent vari-
ance, y; = u(x;) + €, € ~ N(0,0(x;)). The conditional probability density of

target y;, given input vector x; is given by

1 (i) — il

plule) = e {1202l )

The negative log-likelihood of D can then be written (omitting constant terms)

¢ N2
—logLp =) {logo(wi) + M} : (3)

i=1 20?(x;)

where Lp represents the likelihood of D. To model the data, we must estimate
the functions u(x) and o(x). The conditional mean is estimated by a linear

model, p(x) = w* - ¢"(x) + b*, constructed in a fixed feature space, F* (" :

2 By identically distributed we mean that the conditional distribution is identical
for all samples, although the variance of the noise process is different for samples

collected from different regions of X



X — F*).Space F* is induced by a positive definite “Mercer” kernel, ¥ : X' x
X — R, defining the inner product K*(z, z') = ¢*(x)-¢"(z'). The superscript
p is used to denote entities used to model the conditional mean p(x). The
standard deviation is a strictly positive quantity and so the logarithm of the
standard deviation is estimated by a second linear model, logo(x;) = w? -
@’ (x)+0b7, similarly constructed in a feature space F? defined by Mercer kernel
K?. Note that the output of this model represents the natural logarithm of the
standard deviation to ensure that the corresponding estimate of conditional
standard deviation is strictly positive. A superscript o is used to identify

entities used to model the standard deviation, o(x). The parameters of the

model (w*, b*, w’ and b7) are determined by minimising the objective function

e
1 1 ) — ;]2
L, w0 17) = ot P+ P43 gt + OB
i=1 ¢

Clearly this corresponds to quadratic regularisation [10] of a maximum likeli-
hood cost function, where v* and v? are regularisation parameters, providing
independent control of the bias-variance trade-off [11] for the models of the
conditional mean and standard deviation. The representer theorem [13] sug-
gests that the optimal values of w* and w? can be written as expansions over

training patterns (see Appendix A for details),

V4
wh =" of ¢H ()
=1

and
)
w’ = Z ol ¢° (x;),
i=1
such that
‘
u(@) = 3 ot KH (@) + b
i=1
and

¢
logo(z) =Y afK(x,z;) + b°.

i=1



However the training algorithm for the heteroscedastic kernel ridge regression
model is somewhat more complex as the variance of the noise process is no

longer constant.

3 An Efficient Training Algorithm

The parameters, (a*, ", a?,b7), of the conditional mean and standard devi-
ation models can be found via an iterative re-weighted least squares (IRLS)
procedure [15], alternating updates of the mean and standard deviation mod-

els.
3.1 Updating the Model of the Conditional Mean

If o(x;), Vi € {1,2,...,¢} are held constant, the optimal parameters of the
model of the conditional mean, (a*,b"), are given by the minimiser of the
objective function
1 ¢
Lo, b") = 5" [lw”|* + ;Ci{u(wi) -y} (5)
where (' = 202(x;). This is equivalent to the objective function to be min-
imised in the weighted least-squares support vector machine (3|, and so is

minimised by the solution of the set of linear equations

Q1| |a ]
= : (6)
170 b+ 0

where @ = (K" + D), K* = {k=Kizi,z))} 1= (1,1,...,1)7,

h,j=

y= YiY2,--- %), a* = (o, ab,...,af)T and D is a diagonal matrix with



elements ’Yu/(Cla <2: SRR CZ)

3.2 Updating the Conditional Standard Deviation Model

If p(x;), Vi € {1,2,...,¢} are held constant, the optimal parameters of the
model of the conditional standard deviation, (a“,b7), are given by the min-

imiser of the objective function

1 e
L7(a”,b%) = 57 llw’|* + 3_ [oi + & exp{—2z}], (7)
=1

where & = $[u(;) — y;]? and z; = w” - @7 (x;) + b7 = X5, 7K (@i, @;) + b°.
It is straightforward to obtain the gradient vector, V, and Hessian matrix,
H with respect to the vector of model parameters (a”,b”). The model of
the conditional standard deviation can then be updated via a simple Newton-

Raphson algorithm, i.e.
(@%,b7)p41 = (°,07), — H™'V. (8)

Note that while this approach generally leads to a reduction in both L? and
L, it is possible to take too large a step, producing an increase in L or L7,
or both. We therefore advocate a simple step-halving procedure, where steps
are taken in the direction given by —H 'V, but the length of the step taken
being halved at each iteration until a reduction in L is achieved, beginning

with a full Newton step.
3.8 Convergence and Stability

Minimisation of the objective functions, L* and L°, can be shown to consti-

tute convex optimisation problems, i.e. their respective Hessian matrices are



positive semi-definite, and therefore posses single, global minima, L however
is non-convex (see Appendix B). Fortunately although convexity is a guaran-
tee of the presence of a single, global minimum, a non-convex optimisation
problem may still be free of local minima, as illustrated by figure 1. Repeated
minimisation of L from different random initial starting points reliably con-
verges to essentially identical solutions; this strongly suggests that although L
is non-convex, it nevertheless has a single, global minimum. Clearly a gradient
descent optimisation strategy is guaranteed to converge to a local minima as
long as the learning rate is sufficiently small that an update of the model pa-
rameters never results in an increase in the objective function; provided that
the objective function is also continuous, there will always be a finite learning
rate such that this condition is satisfied. In the first step, in minimising L*
we effectively minimise the overall cost function L with respect to (o, b),
whilst holding (a?,b%) constant. This step is achieved analytically and so is
guaranteed not to result in an increase in L* or in L itself. For the second step,
note that the partial derivatives of L? and L with respect to the parameters

of the model of the conditional standard deviation are identical, i.e.

o’ _ oL 9L _ 0L
g dar MY B T ap

Following an update of the model of the conditional mean, since the u-step is

analytic, we know that

As a result, there always exists a sufficiently small learning rate such that a
gradient descent step minimising L? corresponds to a gradient descent step
minimising L. A simple Newton-Raphson algorithm is used to adapt the learn-

ing rate in order to obtain rapid convergence. It is possible for the learning rate



chosen in this way to be sufficiently large that a reduction in L7 is not accom-
panied by a reduction in L. We therefore adopt a simple step-halving strategy
where the step selected by the Newton-Raphson process is successively halved
in magnitude until a step is found that minimises L as well as L, however in
practise step halving is rarely required. The stability of the training algorithm

and convergence to a local minimum of L are therefore assured.

4 Eliminating Bias in the Conditional Variance

It is well known that maximum likelihood estimates of variance-like quantities
are biased (e.g. Bishop [2]). If the model of the conditional mean of the target
distribution over-fits the training data, the apparent variance of the noise pro-
cess acting on the training data is reduced. This means that the corresponding
estimate of the conditional variance will be unrealistically small. To overcome
this bias, the leave-one-out cross-validation estimate of the conditional mean
is substituted when updating the model of the conditional variance, via min-
imisation of (7) [16]. It seems reasonable to suggest that the leave-one-out
estimate of the conditional mean will be less susceptible to over-fitting and so
the estimated conditional variance will be significantly less biased. Normally
the computational expense would be prohibitive, however in this case the
conditional mean is given by a model that is linear in its parameters, minimis-
ing a regularised weighted sum-of-squares cost function, and so leave-one-out

cross-validation can be performed very efficiently in closed form.
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4.1 Fast Leave-One-Out Cross-Validation

In this section, we introduce a fast algorithm giving a close approximation
to the leave-one-out cross-validation error of regularisation networks, based
on similar algorithms for multiple linear regression models that have been
known to the field of statistics for some time (see e.g. Cook and Weisberg
[17]). We begin by providing an alternative formulation of the solution to the
optimisation problem defined in the previous section before deriving closed-
form expressions for the leave-one-out cross-validation behaviour of this family

of kernel learning methods.

4.1.1 Alternative Formulation of the Optimisation Problem

We begin by reformulating the solution to the optimisation problem specified
by the objective function L* (5). Setting the partial derivatives of (5) with

respect to a* and 0" to zero and dividing through by two gives:

J4

u ‘ ¢ .
Sl (e G, ) + Gkt = Y Gk,
=1 =1 =1 =1

r=1,2,...,¢ and

¢ ¢
of DGR+ VY G= G
=1 =1

i=1 j=1

It is straightforward to show that these equations can be written more con-

cisely in the form

(R+ Z"diag(¢)Z)p = Z" diag(¢)y 9)

11



where p = (a*T, )T, Z = [K* 1] and

K" 0
R =
0" 0

where 0 = (0,0,...,0)T. Note the similarity of (9) to the so-called normal
equations arising in the solution of linear multiple regression problems, in this
case including an additional matrix, R, representing the regularisation term in
(5) and the vector of weighting factors, ¢. This formulation permits an efficient
implementation of the leave-one-out cross-validation procedure for the model

of the conditional mean.

4.1.2  Leave-One-0Out Cross-Validation

The similarity of the system of linear equations (9) giving the optimal param-
eters of the model of the conditional mean and the normal equations arising
in multiple linear regression admits a particularly efficient implementation of
the leave-one-out cross-validation procedure, well known in the field of statis-
tics [17]. The optimal vector of model parameters p = (a*”, v*)T is given

by
p=(R+ Z"diag(¢)Z)""' Z" diag(¢{)y,

where Z = [K* 1]. For convenience, let U = diag(¢)Z, C = R+ U"Z and
d = U"t, such that p = C~'d. Furthermore, let Z ), Uy and y;) represent
matrices Z, U and vector y with the i** observation deleted, then

Cy=0C-— u;zl, and di =d—y;z;.

12



To reduce computational complexity, the Bartlett matrix inversion formula

[18] then gives
C_luiziTC_l
1—2TC'u;’

such that the vector of model parameters during the i** iteration of the leave-

-1 __ -1

one-out cross-validation procedure becomes

Cluzl'C™!

_ -1
Py = (C + m) (d — yiu;).

Let H = ZC~'U" represent the hat matrix (in multiple linear regression the
hat, or projection matrix H maps the desired output y onto the output of
the model § = X (X X™)~' X"y = Hy [17]); note that the i** element of the
leading diagonal can be written h;; = zz-TCflui, so expanding the brackets we

have

Cluzl' C™! Cluizl'C™!

)= C'd— C lyu; +
P Yithi 1 —27'C 'u; 1—27C 'u,

Yiug,

which can be rearranged to give

Z{p —yi
= : L) C .
Py =P+t ( 1= Iy u

The residual error for the 5" training pattern for the full modelis r; = y;—2'p

and so
T;

C 'u,;.
T—ha

Py =P—
Noting that g = Zp, the output of the model during the i iteration of the

leave-one-out cross-validation procedure can be written as
Koy =Zpey =B —
where h; is the i column of H, and therefore

o), == e (10

13



The leave-one-out estimate of the mean of the target distribution given by (10)
can then be substituted when fitting the model of the conditional standard

deviation, such that

1 2
& =5 [{uo (@)t —u] -
4.2 Convergence and Stability

It should be noted that while minimisation of L* and L? still represent convex
optimisation problems, it is no longer straightforward to establish whether the
optimisation problem corresponding to the overall cost function L, is convex
or non-convex or the convergence and stability of the training procedure, as
established for the first model in section 3.3. This is a result of the decoupling
the models of the conditional mean and conditional variance imposed by the
leave-one-out cross-validation procedure. However, the convergence and sta-
bility of the training procedure have not proved problematic in empirical work

to date.

5 Results

In this section, we evaluate the conventional homoscedastic kernel ridge regres-
sion (KRR), heteroscedastic kernel ridge regression (HKRR) and leave-one-
out heteroscedastic kernel ridge regression (LOOHKRR) algorithms on three
example datasets: Firstly, the well-known motorcycle benchmark provides a
univariate non-linear regression task characterised by a heteroscedastic noise
process that can be easily visualised. Secondly we apply the heteroscedastic

methods to a synthetic regression task, where the true conditional variance is

14



known, demonstrating that the estimates of conditional variance given by the
leave-one-out heteroscedastic algorithm are approximately unbiased. Lastly,
all three algorithms are applied to the task of predicting episodes of poor air
quality in urban Belfast, an application where an indication of the spread of

the target distribution greatly increases the flexibility of the model.
5.1 The Motorcycle Benchmark

The Motorcycle benchmark consists of a sequence of accelerometer readings
through time following a simulated motorcycle crash performed during exper-
iments to determine the efficacy of crash helmets [19]. Figure 2 shows the out-
put of homoscedastic, heteroscedastic and leave-one-out heteroscedastic kernel
ridge regression models for the Motorcycle dataset. In each case a Gaussian

radial basis kernel was used,
K(@, ) = exp {~A\2l|z — o/|[2} (11)

where the optimal kernel and regularisation parameters, \*, A%, v* and ~,
were selected to minimise a 10-fold cross-validation estimate of the negative
log-likelihood, using a simple Nelder-Mead simplex optimisation procedure
[20] (see table B.1). Note that the error bars for both heteroscedastic kernel
ridge regression models (figure 2(b) and (c)) are appropriately small where
the variance of the data is least. As might be expected, the error bars for
the leave-one-out variant are slightly broader than for the HKRR model, as
shown in figure 2(c). The use of a heteroscedastic noise model also penalises
errors more harshly in low noise regions of the data, leading to qualitatively
improved estimates of the conditional mean, for example eliminating the un-

warranted undulation in the output of the conventional homoscedastic kernel

15



ridge regression model, shown in figure 2 (a), between =~ (3 — 12)ms.

The leave-one-out cross-validation estimates of the sum-of-squared error and
negative log-likelihood statistics for each model over the Motorcycle data set
are given in table B.2. Both heteroscedastic forms of kernel ridge regres-
sion models provide quantitatively better descriptions of the dataset than
the conventional homoscedastic form, as indicated by the improved nega-
tive log-likelihood scores, the LOOHKRR model performing best of all. The
LOOHKRR model also provides a modest reduction in the sum-of-squares

eIror.

5.2 Synthetic Dataset

In this section we demonstrate that the leave-one-out kernel ridge regression
model provides almost unbiased estimates of the conditional standard devia-
tion using a synthetic regression problem, taken from Williams [9], in which
the true conditional standard deviation is known exactly. The univariate in-
put patterns, z, are drawn from a uniform distribution on the interval (0, ),
the corresponding targets, y, are drawn from a univariate Normal distribution

with mean and variance that vary smoothly with z:

. (5xY . (3z 1 1 C (521717
@~ U(l,m), and y"’N<Sm{E}Sm{E}’m+1[1‘3“1{7}] )

Figure 3, parts (a) and (b), show the arithmetic mean of the predicted con-
ditional mean and + one standard deviation credible interval for simple and
leave-one-out heteroscedastic kernel ridge regression models respectively, over
1000 randomly generated datasets of 64 patterns each. A radial basis func-

tion kernel was used, with width parameter, A = 2, for both the model of the

16



conditional mean and the model of the conditional standard deviation, the
regularisation parameters were set as follows: v# = v? = 1. In both cases the
fitted mean is, on average, in good agreement with the true mean. Figure 3,
parts (c¢) and (d), show the arithmetic mean of the predicted conditional stan-
dard deviation for the simple and leave-one-out heteroscedastic kernel ridge
regression models. The simple heteroscedastic kernel ridge regression model,
on average, consistently under-estimates the conditional standard deviation,
and so the predicted credible intervals are optimistically narrow. The mean
predicted conditional standard deviation for the leave-one-out heteroscedastic
kernel ridge regression model is very close to the true value. This suggests that
the estimation of the conditional standard deviation is (almost) unbiased as

the expected value is approximately equal to the true value.

5.3 Predicting Episodes of Poor Air Quality

There are many diverse social, health-care and economic problems associated
with poor air quality. While government bodies have established threshold con-
centrations for a range of pollutants, the use of statistical modelling techniques
to predict episodes of poor air quality is problematic, firstly because episodes
of poor air quality are rare and on the decline due to a reduction in emis-
sions, but also because different end users have different costs associated with
false-positive and false-negative predictions. The output of a heteroscedastic
regularised kernel regression model provides a full description of the target
distribution giving the predicted concentration of a given pollutant. Given a
vector, &, summarising current meteorological and emissions data, the model

provides not only a forecast of the most likely concentration, u(x), but also

17



of the probability that the observed concentration, y, exceeds a fixed thresh-
old level, Y. The latter is obtained via integration of the upper tail of the

predictive distribution,

p(y>Y|m):/Yoo\/ﬁexp{%}dz (12)

(initial studies indicate that a heteroscedastic Gaussian distribution provides
a reasonable approximation to the observed noise process). A single model can
then be used for analysis of air quality time-series data, without the need for
retraining to accommodate changes in threshold concentrations or misclassi-

fication costs.

Conventional homoscedastic and heteroscedastic and leave-one-out heteroscedas-
tic kernel ridge regression networks were trained to predict the daily mean
concentration of sulphur dioxide in urban Belfast, given inputs summarising
the recent history of the SO, time-series and current meteorological condi-
tions. Data from the years 1993-1996 were used in training and the models
evaluated on data from the year 1998. In each case, the hyper-parameters
were determined via manual trial-and-error exploration of the search space,

maximising the likelihood over the test data.

Table B.3 shows a statistical comparison of KRR, HKRR and LOOHKRR
models. The HKRR model provides more accurate estimates of the condi-
tional mean concentration, as illustrated by a lower sum-of-squared error.
The cross-entropy measure for the task of predicting exceedences, using (12),
indicates that the HKRR and LOOHKRR models also provide more accu-
rate estimates of the probability of an exceedance than the KRR model. It is

well-known however that maximum likelihood estimates of the variance are bi-
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ased; if over-fitting occurs in estimation of the conditional mean, the apparent
noise density is unrealistically small. As a result the negative log-likelihood
of the HKRR model is inferior to that of the KRR. The LOOHKRR model
improves somewhat on the negative log-likelihood of the HKRR model and
also improves on the cross-entropy for the prediction task, while the sum-of-
squares error remains the same. The negative log-likelihood for the LOOHKRR
model however remains greater than that of the conventional homoscedastic
kernel ridge regression model (KRR). This occurs because the negative log-
likelihood statistic is more sensitive to outliers in the test data for the HKRR
and LOOHKRR models than for the KRR model. Test data with a relatively
small divergence from the predicted mean given by the model at a point in
the input space where the model is most confident (i.e. the estimate of the
conditional variance is low) can disproportionately inflate the negative log-
likelihood. The improved sum-of-squares and cross-entropy statistics however

demonstrate the superiority of the LOOHKRR model.

6 Summary

A heteroscedastic kernel ridge regression model is introduced, which jointly
estimates the conditional mean and variance of the target distribution. An ef-
ficient training algorithm is provided, which can easily be shown to be stable
and convergent to the global optimum of the cost function. Furthermore this
model is extended to eliminate the bias inherent in maximum likelihood es-
timates of conditional variance through the use of the leave-one-out estimate
of the conditional mean when fitting the model of the conditional variance.

The resulting estimates of conditional variance are shown experimentally to
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be approximately unbiased using a synthetic dataset where the true variance

is known. The model is then applied to the Motorcyle benchmark dataset and

to the task of predicting episodes of poor air quality in an urban environment.

The use of a heteroscedastic noise model is demonstrated to provide a quali-

tatively and quantitatively better description of the dataset than is achieved

using a conventional regularised sum-of-squares cost function (i.e. kernel ridge

regression).
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A The Generalised Representer Theorem

The representer theorem is a result arising from the field of approximation
theory [13] useful in the construction of kernel learning methods. Here we
provide a slightly simplified version of a generalised representer theorem due
to Scholkopf et al. [21] sufficient for purposes of the work described here. For
a basic introduction to the concepts of reproducing kernel Hilbert spaces, see

the books by Cristianini and Shawe-Taylor [12] or Schélkopf and Smola [22].
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Theorem 1 (Generalised Representer Theorem [21])

Let D = {(zi,y:)}io1, T € X C R y; € R represent the training data and
K: X xX — R the reproducing kernel generating a reproducing kernel Hilbert
space (RHKS) [23] of functions H. We wish to select a function, f, from H

providing the solution to the primal optimisation problem, P:

mm{zoyz, 2) + 115}

feH

where C(-,-) is a convez loss function, Q(-) is a strictly increasing function
and || f||3 represents the norm of f measured in the RKHS H. The minimiser

of P then admits a solution of the form
¢
= Z Oéz'K:
i=1

Proof:

Let Hp represent the subspace of H spanned by the functions K(-,x;), Vi €
{1,2,...,¢}, then every f € H has a unique decomposition in terms of a

component within Hp, fj(-), and a component orthogonal to Hp, f.(-), i.e.

fC)=f()+ f() Zaz Sxi) + fu()

Via the reproducing property of the RKHS H,

4

Flas) = (FO), KC @) = 3 i (K (@), K(25)) + (fL(), K( 7))

i=1
As f1(-) is orthogonal to Hp, i.e. {fi,K(-,2;)) =0, Vie {1,2,...,0}, the

second term vanishes, and so

Zaz (), ;).

The wvalues of f for points belonging to the training data, D, thus depend
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only on the vector of model parameters a.. The first term of the optimisation
criterion is a point-wise loss function therefore is independent of the orthogonal
component, depending only on the value of f for points in D. Let us now define
equivalence classes for functions in H, such that f and f' belong to the same
equivalence class if f(x;) = f'(x;), Vi € {1,2,...,£€}. The second term of the

optimisation criterion can be written,

2

¢
>oaik(, )| + ||fL||3{> :
i=1

QlIf1I3) = @ (

H
Clearly the global optimum of the optimisation problem, P, will be the member

of the optimal equivalence class for which ||f||3 = 0.

Clearly L* and L° represent optimisation problems of the form directly covered
by the generalised representer theorem, as described above, given that they are
each comprised of a convex point-wise loss function together with the usual
regularisation term. The combined optimisation criterion, L, also falls into
this category except that there are now two regularisation terms instead of
one, however it is straight-forward to extended the arguments given above in

order to accommodate this.

B On the Convexity Optimisation Problems

For an optimisation problem to be convex, the Hessian of the objective func-
tion with respect to the unknown variables must be positive semi-definite, i.e.
the eigenvalues of the Hessian are non-negative. A simple test to determine

whether a matrix is positive semi-definite is given by the following lemma:
Lemma 1 (test for a positive semi-definite matrix)
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Let A be a symmetric matriz, then A is positive semi-definite if and only if
for any vector x # 0

Az > 0.

Kernel learning methods typically seek to minimise an objective function com-
prised of a linear combination of a loss function, Lp, which measures the data

misfit and a regularisation term, Ly, i.e.
L=Lp+ A\Lg.

Lz is normally a quadratic function of the model parameters, and is self-
evidently convex. Clearly L then represents a convex optimisation problem
provided that Lp is also convex. We must therefore show that the Hessian
of Lp with respect to the model parameters is positive definite. In the case
of kernel learning methods, however, rather than construct the Hessian with
respect to the model parameters, we will show that we need only consider
the Hessian with respect to the output of the model (before any non-linear
transformation). Kernel learning methods generally implement a model of the
form
¢
v(o) = 1) = £ (L k().

for simplicity, but without loss of generality, we will omit the usual bias term.

The Hessian of Lp with respect to the model parameters, @ = {ay, ag, ..., a4}
is then
0Ly 1°
H'D - [hw - a a .
Q005 |, i q

Using the chain rule, we have that

82LD _ ﬁ i 82LD ) azm ) azn
da; 0y, 02m0zn, Oy Ocj’

m=1n=1
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where z; = Z§:1 a;K(zj, ;). The Hessian matrix Hp can then be written in

the form
Hp =GHG",

where H p is the Hessian of Lp with respect to the raw output of the kernel

machine,

N . 0%Lp "
H = ii =
P [h J 62,82]1

3
ij=1

and G is a matrix of the partial derivatives of the output of the kernel machine

with respect to the parameters, o,

aZi‘|Z

G:lgijza
J

ij=1
The following lemma then shows that L represents a convex optimisation

problem provided that Hp is positive definite:

Lemma 2 (positive semi-definiteness of B = CACT)

Let A be a positive semi-definite matriz, then B = CACT is also positive

semi-definite.

Proof: If A is positive semi-definite, then for any vector x # 0,
T Az > 0.
We can then write
z'CAC Tz = (CTz)"A(CTx) = 2" A% > 0,
since A 1is already known to be positive semi-definite.
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B.1  Convexity of L*

The term of the optimisation criterion for the model of the conditional mean

that is dependent on the data is given by

4

L% = Z Cz'(yz' - Zi)2

=1

where 2z; = p(x;) and ¢! = 20%(z;). The Hessian of L%, with respect to z; is

then given by

R R aZLll £ )
H) = lhij = az] = diag(2¢),
1U<j

ij=1
where ¢ = ((1,(, - .., () and diag(v) represents a diagonal matrix with non-
zero elements given by the vector v. The elements of ¢ are clearly non-negative,
and so the following lemma demonstrates that H % is positive semi-definite

and therefore L* represents a convex optimisation problem.

Lemma 3 (positive semi-definiteness of diagonal matrices)

A diagonal matrix A = diag(a) with non-negative diagonal elements, a =

(a1, a9, ...,a,), is semi-positive definite.
Proof: For any vector x # 0,

:cAwT=Zaix? >0 iffa; >0, Vie{l,2,...,n}.

=1
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B.2  Convexity of L

The term of the optimisation criterion for the model of the conditional stan-
dard deviation that is dependent on the data is given by
¢
LY =" [z + & exp{—22}] . (B.1)
i=1

where z; =logo(x;). and & = 3[u(x;) — y;]*. The Hessian of LY with respect

to z; is then given by

2T0 ¢
“D] — diag(46v),

o= i = 2l
I 6zi6,zj ij=1
where & = (&,&,...,&) and logrv = —2(21, 29, ..., 2¢)- As the elements of

. . NN " .
& and v are non-negative, via lemma 3, we know that H,, is positive semi-

definite and so L“ also represents a convex optimisation problem.

B.3  Convexity of L

The term of the optimisation criterion for the combined model that is depen-
dent on the data is given by
: 1
Lp=Y)_ [Zi + 5(/%‘ — y;)? exp{—2z;}
i=1
where z; = logo(x;) and p; = p(x;). In this case the model has two outputs

and so the Hessian of Lp with respect to z; and y; is then described by a block

matrix

H, H,
Hp=

H; H,

where
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[02Lp]" o
~ | 022 ] = Hp,

i,j=1

P Lo r l 0Ly r .
H, = =H. = = diag(—2(u; — vi) exp(—22;)),
= g, H = |G|, = dinsl=20m = ) exp(-25)
'aZLDr

sy )

H4:

ij=1

If H ; is positive definite, vT H pv > 0 for any vector v. Let v = [v#T 7T

bl

then using block matrix algebra
v Hpv = v H v" + v’ T Hyv* + v*T Hov® + v°T Hyv°
since Hq, ..., H, are diagonal this can be expanded to

= Zexp —22)[(v)? 4+ 2(v))* (s — yi)? — vk (i — yi)]

Note that if v = v7(u; — y;) i = 1,...,£ then
¢

Z —22)[(v] (i — 1:))* + 2(07 ) (s — w:)* — W77 (i — i) (i — i)

1

= - ZGXP —22) (v])? (1s — s)®

This is negative, since the elements of the summation are non-negative. There-
fore, as there exists a vector v such that vTHpv < 0, Hp is not positive

definite and L corresponds to a non-convex optimisation problem.
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Fig. 1. A straight line joining any two points on a convex function does not cut the
graph of that function other than at the end-points, as shown in (a). The function

shown in (b) is clearly non-convex, note however that although g(x) is non-convex

it is nevertheless unimodal.
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Fig. 2. Homoscedastic (a) heteroscedastic (b) and leave-one-out heteroscedastic (c)

kernel ridge regression models of the Motorcycle benchmark dataset.
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Fig. 3. Arithmetic mean of the estimate of the conditional mean and + one stan-

dard deviation credible interval for (a) simple heteroscedastic kernel ridge regression

(HKRR) and (b) leave-one-out heteroscedastic kernel ridge regression (LOOHKRR)

models for a synthetic regression problem, (c) and (d) display the correspond-

ing means of the estimated conditional standard deviation for the HKRR and

LOOHKRR models respectively. All graphs show average results computed over

1000 randomly generated datasets (see text for details).
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Table B.1

Kernel and regularisation parameters employed for the Motorcycle benchmark

dataset.
Model AH H e 0l
KRR 6.776 1.337 - -
HKRR 8.705 | 5.68 x 10~* | 6.762 | 2.776
LOOHKRR | 8.137 | 5.91 x 10~* | 7.736 | 1.487
Table B.2

Leave-one-out cross-validation estimates of the sum-of-squares error and nega-

tive log-likelihood for kernel ridge-regression models of the Motorcycle benchmark

dataset.

Model SSE | —logLp
KRR 71702.2 | 487.262
HKRR 71922.6 | 440.221

LOOHKRR | 71528.0 | 436.585
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Table B.3
Comparison of conventional, heteroscedastic and leave-one-out heteroscedastic ker-
nel ridge regression models (KRR, HKRR and LOOHKRR respectively) for predic-

tion of daily mean SOs concentration in urban Belfast.

Model SSE | —logLp | X-ENT
KRR 15.81 517.8 6.57
HKRR 14.92 2313 3.48
LOOHKRR | 14.92 1581 3.47
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