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Abstract

Suykens et al. [1] describe a weighted least-squares formulation of the support
vector machine for regression problems and presents a simple algorithm for sparse
approximation of the typically fully dense kernel expansions obtained using this
method. In this paper, we present an improved method for achieving sparsity in
least-squares support vector machines, which takes into account the residuals for
all training patterns, rather than only those incorporated in the sparse kernel ex-
pansion. The superiority of this algorithm is demonstrated on the motorcycle and

Boston housing datasets.
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1 Least-Squares Support Vector Machines

The least-squares support vector machine (LS-SVM), given training data, D =
{wi,yi}le, x € X CRY, y; €Y C R, constructs a linear regression model,
f(x) = w- ¢(x) + b, in a high dimensional feature space, F(¢ : X — F), in-
duced by a kernel function defining the inner product K(z, ') = ¢(x) - p(').
A commonly used kernel is the Gaussian radial basis function, K(z,z') =
exp{—o?||z — z'||*}. The optimal values for the weight vector, w, and bias,

b, are given by the minimum of an objective function,

W(w,b) = —IIW||2+VZ i —w - @) —b)? (1)

implementing a quadratic regularisation of a sum-of-squares empirical risk.
The representer theorem [2] states that the solution of this problem can be

written as an expansion in terms of training patterns,

f(x) = ;aﬂC(wi, x)+b.

Suykens et al. [1] show that the optimal coefficients of this expansion, (e, b)7,

are given by the solution of a system of linear equations,

where Q = (K +~71), K = {kj = K(z,;)} ., 1=(1,1,....,1)T, y =

,j=1"

(yia Y2,.. ., y@)T and o = (ai’ g, ... aaE)T'

The kernel expansions describing least-square support vector machines are
typically fully dense, i.e. a; # 0,V i € {1,2,...,£}. Suykens et al. [3,1] ad-

vocate use of the following algorithm to obtain a sparse approximation: A



LS-SVM is trained on the entire dataset, yielding a vector of coefficients, o
A small fraction of the data (say 5%), associated with coefficients having the
smallest magnitudes, are discarded and the LS-SVM retrained on the remain-
ing data. This process is repeated until a sufficiently small kernel expansion
is obtained. It is observed in [1] that model selection should be performed at
each iteration to find new values for the regularisation parameter, v and any

kernel parameters, such that optimal generalisation is achieved.

2 TImproved Sparsification

In this section we present two modifications to the least-squares support vector
machine. The first modification is based on the observation that changing the
number of training patterns alters the balance between the sum-of-square
empirical risk and the quadratic regulariser in the objective function (1). This
implies that model selection based on cross-validation schemes will generally
lead to under-regularised models. This can easily be remedied by quadratic

regularisation of a mean-squared-error empirical risk,

W(w,b) = —|| 2+ Z —w- ¢(x;) —b)*, (3)

The optimal expansion can be found by solving the system of linear equations

(2) substituting Q = (K + ¢yI).

The generalisation performance of sparse approximations of least-squares sup-
port vector machines can be further improved by including the residuals of
patterns not used in the kernel expansion within the objective function. The
weight vector, w, is then represented as a weighted sum of selected training

patterns, w = Y ;c5 fip(x;), where S C {1,2,.../4} is the set of indices of



training patterns used to form the kernel expansion. The objective function
(3) can then be written as
’y ¢
W( Z Bzﬁ] z] Z Z Z Bjkij - b)2

1,J€S 1=1 JjES
Setting the partial derivatives with respect to B and b to zero, and dividing
through by 2+v/¢, yields:

Z@Z/’% +6b = Z«%

€S  j=1

and

€S

£
Z/BZ ( ’ykzr + Zk]'rka> + bzkzr ZyikiTa Vres
i=1

These equations can be expressed as a system of |S| + 1 linear equations in

|S| + 1 unknowns,

T b | S
s
where Q = {wi;}ijes, wij = Lkij + S0 Kk, ® = (B2, @; = Yy kij,
and ¢ = (cz)l Sl e = Z] 1 yjki; (for notational convenience, we assume that

the training data are re-ordered such that & = {1,2,...,|S|}).

2.1 Computational Complezity

The first modification to the least-squares support vector machine proposed in
the previous section (scaling of the regularisation parameter) leaves the com-
putational complexity unchanged as it is clearly a straightforward reparame-
terisation of the standard algorithm. Each iteration of Suykens’ sparsification
algorithm requires the solution of a system of n + 1 linear equations, where

n is the number of training patterns retained in the kernel expansion. The



computational complexity of each iteration is therefore O(n?®). The complex-
ity of reducing the kernel expansion from ¢ to n terms is then O(¢*) as we
must begin by solving a system of £+ 1 linear equations. Each iteration of the
improved sparsification procedure, again involves the solution of a system of
n + 1 linear equations, however in this case the computational complexity is
dominated by the construction of the matrix €2, with a complexity of O(¢n?),
however the complexity of reducing the kernel expansion from ¢ to n terms
remains O(¢*). The improved sparsification algorithm does not require further
model selection to achieve satisfactory performance, and so it is significantly

faster in practice.

3 Results

In this section, the proposed improved sparse least-squares support vector
machine (implementing both of the modifications suggested in section 2) is
evaluated over two well-known datasets, the motorcycle, and Boston housing
benchmarks. In each case the improved training algorithm is compared with
the conventional sparse least-squares support vector machine [1], including
model selection based on minimisation of a 4-fold cross-validation estimate of

the RMS error during each iteration of the sparsification process.

The motorcycle dataset consists of a sequence of accelerometer readings through
time following a simulated motor-cycle crash during an experiment to deter-
mine the efficacy of crash-helmets (Silverman [4]). Figure 1 displays the 10-fold
cross-validation error of conventional and improved sparse least-squares sup-
port vector machines for the motorcycle dataset as a function of the number of

training patterns included in the kernel expansion. The RMS error for the im-



proved sparse least squares support vector machine is consistently lower than
that of the conventional approach without recourse to further model selection

during each iteration of the sparsification process.

It is interesting to note that the RMS error for the improved sparse least-
squares support vector machine is almost constant until all but 9 feature
vectors have been eliminated (Figure 1). This occurrs because relatively few
training vectors, {®(x;) }ics, S C {1,2,... ¢}, are required to form an approx-
imate basis for the training data in the feature space F [5], i.e. the training
data in F can be expressed as a linear combination of the basis vectors,
P(x;) = Z A®(xj), Vie{l,2,... ¢},
jeS

where S is the set of indices corresponding to basis vectors. The representer
theorem states that the weight vector w lies in the span of the training data,
and so can also be written as a linear combination of these basis vectors. Pro-
vided that the set of remaining feature vectors forms a basis for the entire
data set, the weight vector found by the improved sparse least-squares sup-
port vector machine coincides with that given by the fully dense least-squares
support vector machine. Furthermore any basis vector that is orthogonal to
the optimal weight vector can also be safely deleted without sacrificing per-
formance. Note that some kernels, including the radial basis function kernel
used in this example, are of full rank, and so a sparse basis can not generally
be found [6], however in some cases, such as this, a very close approximation

is possible.

The Boston housing dataset describes the relationship between the median
value of owner occupied homes in the suburbs of Boston and thirteen at-

tributes representing environmental and social factors believed to be relevant



[7]. Figure 2 displays the 10-fold cross-validation error of conventional and
improved sparse least-squares support vector machines as a function of the
number of training patterns included in the kernel expansion. Again the error
for the improved sparse least squares support vector machine is consistently
lower than that of the conventional approach. In this case a sparse basis cannot
be found and so the RMS error for the improved sparse least-squares support

vector machine degrades progressively as feature vectors are eliminated.

4 Conclusions

In this paper we have presented an improved training algorithm for sparse
least-squares support vector machines, taking into account the residuals for all
training patterns, not just those appearing in the sparse kernel expansion. The
use of a scaled regularisation parameter, eliminating the dependence on the
size of the training set, is also proposed. The improved method demonstrates
superior generalisation over the existing pruning algorithm and also eliminates
the need for further model selection and is therefore significantly faster. The
method can be easily extended to the weighted least-squares support vector

machine.
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Fig. 1. Cross-validation error of conventional (SLS-SVM) and improved (ISLS-SVM)

sparse least-square support vector machines, over the motorcycle dataset, as a func-

tion of the number of training patterns included in the kernel expansion.
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Fig. 2. Cross-validation error of conventional (SLS-SVM) and improved (ISLS-SVM)
sparse least-square support vector machines, over the Boston housing dataset, as a

function of the number of training patterns included in the kernel expansion.
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