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Abstract— The optimal model parameters of a kernel ma-
chine are typically given by the solution of a convex optimisation
problem with a single global optimum. Obtaining the best
possible performance is therefore largely a matter of thedesign
of a good kernel for the problem at hand, exploiting any
underlying structure and optimisation of the regularisation and
kernel parameters, i.e. model selection. Fortunately, analytic
bounds on, or approximations to, the leave-one-out cross-
validation error are often available, providing an efficient and
generally reliable means to guide model selection. However, the
degree to which the incorporation ofprior knowledge improves
performance over that which can be obtained using “standard”
kernels with automated model selection (i.e.agnostic learning),
is an open question. In this paper, we compare approaches using
example solutions for all of the benchmark tasks on both tracks
of the IJCNN-2007 Agnostic Learning versus Prior Knowledge
Challenge.

I. K ERNEL LEARNING METHODS

Assume we are given labeled training data,D =
{(xi, yi)}

ℓ

i=1, where xi ∈ X ⊂ R
d is a vector of input

features describing theith example andyi ∈ {−1,+1} is
an indicator variable such thatyi = −1 if the ith example
is drawn from classC− and yi = +1 is drawn from class
C+. Kernel Ridge Regression [19] (or alternatively the Least-
Squares Support Vector Machine [21]) aims to construct a
linear modelf(x) = w · φ(x) + b in a fixed feature space,
φ : X → F , that is able to distinguish between examples
drawn fromC− andC+, such that

x ∈

{

C+ if f(x) ≥ 0
C− otherwise

.

However, rather than specifying the feature space,F directly,
it is implied by a kernel functionK : X ×X → R, giving the
inner product between the images of vectors in the feature
space,F , i.e. K(x,x′) = φ(x) · φ(x′). A common kernel
function is the Radial Basis Function (RBF) kernel

K(x,x′) = exp
{

−η‖x− x′‖2
}

, (1)

where η is a kernel parameter controlling the sensitivity
of the kernel function. Other useful kernels include the
Automatic Relevance Determination (ARD) kernel

K(x,x′) = exp

{

−
d

∑

i=1

ηi(xi − x′

i)
2

}

, (2)

which provides individual control over the sensitivity of the
kernel to each of the input features, and the linear,

K(x,x′) = x · x′ (3)
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and polynomial kernels

K(x,x′) = (x · x′ + c)
d (4)

where c and d are kernel parameters (d = 2 gives the
quadratic kernel andd = 3 the cubic kernel). The model
parameters(w, b) are given by the minimum of a regularised
[23] least-squares loss function,

L =
1

2
‖w‖2 +

1

2ℓµ

ℓ
∑

i=1

[yi −w · φ(xi)− b]
2
, (5)

where µ is a regularisation parameter controlling the bias-
variance trade-off [10]. The accuracy of the kernel machine
on test data is critically dependent on the choice of good
values for thehyper-parameters, in this caseµ and η. The
search for the optimal values for such hyper-parameters is a
process known asmodel selection. The representer theorem
[13] states that the solution to this optimisation problem can
be written as an expansion of the form

w =

ℓ
∑

i=1

αiφ(xi) =⇒ f(x) =

ℓ
∑

i=1

αiK(xi,x) + b.

The dual parameters of the kernel machine are then given by
the solution of a system of linear equations,

[

K + µℓI 1

1
T 0

] [

α

b

]

=

[

t

0

]

. (6)

which can be solved efficiently via Cholesky factorisation
of K + µℓI, with a computational complexity ofO(ℓ3)
operations [21].

A. Model Selection

An attractive feature of the kernel ridge regression machine
is that it is possible to perform leave-one-out cross-validation
[14, 16] in closed form, with minimal cost as a by-product of
the training algorithm. LetC represent the matrix on the left
hand side of (6), then the residual error for theith training
pattern in theith fold of the leave-one-out process is given
by,

r
(−i)
i

= yi − ŷ
(−i)
i

=
αi

C−1
ii

. (7)

Similar methods have been used in least-squares linear
regression for many years, e.g [24]. While the optimal model
parameters of the kernel machine are given by the solution
of a simple system of linear equations, (6), some form of
model selection is required to determine good values for the



hyper-parameters, θ = (µ,η) in order to maximise gen-
eralisation performance. The analytic leave-one-out cross-
validation procedure described here can easily be adopted
to form the basis of an efficient model selection strategy
[6] based on a Allen’s predicted residual sum-of-squares
(PRESS) statistic [1],

PRESS(θ) =

ℓ
∑

i=1

{

r
(−i)
i

}2

.

The PRESS criterion can be optimised efficiently using
scaled conjugate gradient descent (e.g. [25]). For full details
of the training and model selection procedures for the kernel
ridge regression model, see [4]. The kernel machines used
in this study were implemented using a MATLAB toolbox
implementing a generalised form of kernel learning method,
described in companion paper [5].

B. Performance Estimation

It not seem wise to be over-reliant on the validation set
BER, available from the challenge website1, to guide the
development of models as it is far to small to provide a reli-
able indicator of the true level of generalisation performance,
especially for highly imbalanced datasets, such asHIVA. A
more reliable guide can be obtained via cross-validation [20]
or bootstrap re-sampling [9] procedures using the labeled
training set. For the previous Performance Prediction Chal-
lenge [12] and the Agnostic Learning track, we employed
a computationally expensive, but reliable scheme based on
100-fold test-training splits of the available data. For the prior
knowledge track, we adopt a more reasonable 10-fold cross-
validation approach. It is important to avoid selection bias
by performing model selection separately in each fold of
the cross-validation procedure, i.e. we should view model
selection as an integral part of the model fitting process.

II. RESULTSOBTAINED ON THE ADA DATASET

The goal of theADA benchmark is to identify high income
individuals, earning$50K per annum or more, on the basis
of census data. The benchmark is derived from theAdult
dataset from the UCI machine learning repository [17]. The
data include a mixture of continuous, ordinal and Boolean
features (e.g.age, education and sex respectively).
This dataset seemed to present the least opportunity for
incorporating prior knowledge into the design as of a kernel
model as the pre-processing of the data for the agnostic
track of the challenge is eminently sensible. We therefore
followed the same pre-processing steps for both the agnostic
and prior-knowledge submissions, with the exception of
power transformations of theage, capital-gain and
capital-loss continuous features, such that, e.g.

x
age
i
← 10

√

x
age
i

This type of transformation [3] is commonly used to reduce
the skew of the distribution of a feature having a heavy

1http://www.agnostic.inf.ethz.ch/

upper tail, making it better suited to distance-based kernel
functions, such as the RBF kernel. Models were generated
using both kernel ridge regression and kernel logistic re-
gression, with a variety of kernel functions. Table I shows
representative results for theADA benchmark; the best results
were obtained using kernel ridge regression, with an ARD
kernel, which is currently the leading model on the prior
knowledge track for this dataset, in terms of validation set
performance. However, given that reliable cross-validation
results are not yet available for this model, it would be unwise
to confidentlyexpect a similar level of performance on the
test data.

TABLE I

REPRESENTATIVE RESULTS FOR THEADA BENCHMARK.

model kernel
cross-validation validation set

BER AUC BER AUC

KRR linear 0.2004 0.8838 0.2206 0.8644

KRR poly (p = 2) 0.1909 0.8948 0.2143 0.8745

KRR poly (p = 3) 0.1920 0.8941 0.2094 0.8727

KRR RBF 0.1949 0.8941 0.2095 0.8729

KRR ARD 0.1653† 0.9180† 0.1740 0.8910
† biased leave-one-out estimate from the model selection process.

III. RESULTSOBTAINED ON THE GINA DATASET

The GINA benchmark essentially describes an optical
character recognition (OCR) problem, constructed from the
MNIST2 data [15], where the task is to distinguish the odd
digits from the even. Each digit is represented by a grid of
28×28 integer pixel values in the range[0 255], which we
rescaled to lie in the range[0 1], by dividing each feature
by 255. For the agnostic track, the input vector consists
of the pixel intensity values for two adjacent digits, the
task being to determine whether the second digit is odd or
even, so half of the input features represent uninformative
distractors. The reference solutions for the agnostic track
were implemented by training kernel ridge regression models
with linear, quadratic, cubic and RBF kernels directly on
the scaled input data. The results of performance estimation
using 100 random training-test partitions of the data are
shown in Table II. An improved agnostic solution, using an
ARD kernel acting on the first hundred principal compo-
nents of the data was later implemented, although external
cross-validation proved prohibitively expensive, and so the
performance estimate given here is the optimistically biased
leave-one-out estimate used as the model selection criterion.

A. Engineered Solutions for the Prior Knowledge Track

The prior knowledge that theGINA dataset describes an
optical character recognition problem, where each feature
represents a pixel intensity on a regular grid, can be ex-
ploited in the design of the kernel. It seems reasonable to
suggest that different areas of the grid are likely to carry

2http://yann.lecun.com/exdb/mnist



TABLE II

RESULTS ON THEGINA DATASET FOR THEAGNOSTICLEARNING TRACK

(BEST RESULTS SHOWN IN BOLD).

model kernel
100-fold validation validation set

BER AUC BER AUC

KRR linear 0.1324 0.9364 0.1273 0.9461

KRR poly (p = 2) 0.0578 0.9848 0.0317 0.9940

KRR poly (p = 3) 0.0532 0.9870 0.0285 0.9955

KRR RBF 0.0571 0.9853 0.0442 0.9955

KRR PCA-ARD 0.0297† 0.9950† 0.0253 0.9968
† biased leave-one-out estimate from the model selection process.
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Fig. 1. Initial distribution of receptive fields for the multiple receptive field
(MRF) kernel (a) and the configuration following model selection (b).

more discriminative information than others, but that the
variation in discriminative information is reasonably smooth
across the image. The direct application of an ARD kernel
would be computationally infeasible in this case as there are
28 × 28 = 784 hyper-parameters to be tuned (this would
also be highly likely to result in over-fitting of the model
selection criterion [7]). We therefore introduce the multiple
receptive field (MRF) kernel, which is essentially an ARD
kernel where the weights are given by the sum of seven
Gaussian receptive fields distributed across the image. The
twenty eight hyper-parameters of the MRF kernel describe
the location, width and sensitivity of each of the receptive
fields. Figure 1 (a) shows a contour plot of the initial weight
matrix for the multiple receptive field RBF kernel. Through
model selection, the hyper-parameters evolve so that the
receptive fields focus on areas of the image containing the
most discriminative information, as shown in Figure 1 (b).

The dataset for the prior knowledge tract also provides
the identity of each digit comprising the training set. This
is useful as the target concept is actually a composite of
ten latent sub-classes, representing each individual digit. We
therefore adopt a hierarchical approach, in which the first
layer consists of 25 kernel ridge regression models, trained
to distinguish between all possible pairs consisting of one
odd digit and one even digit. The outputs of these kernel
machines form the input to a kernel logistic regression model,
used to estimate thea-posteriori probability that the input
digit is odd. The design of the first layer networks was
relatively straight-forward, with all networks being based

on a simple radial basis function kernel, operating directly
on the pixel intensity values. The regularisation and kernel
parameters were optimised separately for each network, via
minimisation of the PRESS statistic. While this may appear
to be computationally rather expensive, the datasets used to
train each network consisted of only those training patterns
representing two of the ten digits. As the computational
complexity of the training and model selection procedures
areO(ℓ3), training the full set of low level networks is still
approximately five time faster than training a model on the
full dataset. The output classifier is trained on the leave-one-
out output of the first layer networks, in order to provide
a reasonably unbiased dataset that is more representative of
operational conditions (c.f. [8]).

TABLE III

RESULTS ON THEGINA DATASET FOR THEPRIOR KNOWLEDGE TRACK

(BEST RESULTS SHOWN IN BOLD).

model kernel
cross validation validation set

BER AUC BER AUC

KRR linear 0.1297 0.9416 0.1270 0.9525

KRR poly (p = 2) 0.0365 0.9914 0.0158 0.9998

KRR poly (p = 3) 0.0310 0.9938 0.0095 0.9999

KRR poly (p = 4) 0.0284 0.9948 0.0064 0.9999

KRR poly (p = 5) 0.0279 0.9949 0.0064 0.9999

KRR poly (p = 6) 0.0256 0.9949 0.0126 0.9999

KRR RBF 0.0290 0.9945 0.0095 0.9998

KRR MRF 0.0315 0.9948 0.0157 0.9996

KRR+KRR RBF+RBF 0.0263 0.9956 0.0128 0.9996

KRR+KRR RBF+ARD 0.0253 0.9959 0.0192 0.9994

KRR+KRR MRF+RBF 0.????† 0.????† 0.???? 0.????

KRR+KRR MRF+ARD 0.????† 0.????† 0.???? 0.????
† biased leave-one-out estimate from the model selection process.

Table III shows example results for the Prior Knowledge
track. In this case, we are able to significantly improve on the
Agnostic Learning track entries, the best model is currently
tied for first place on the Prior Knowledge track in terms of
validation set BER. It seems likely that this is largely due to
the deletion of the distractors (note that the best performance
is still obtained using a relatively simple classifier). It is
possible that the distractors we particularly malicious here,
as they are highly correlated with each other, but describe a
coherent, but uninformative structure within the data.

IV. RESULTSOBTAINED ON THE HIVA DATASET

The aim of theHIVA benchmark is to identify small
molecules that are active against HIV based on their chemical
structure. The Agnostic Track dataset provides a large set of
binary molecular descriptors, computed using the ChemTK3

package. The reference solutions for this dataset compriseof
kernel ridge regression models with standard kernels acting
directly on the binary features. In each case, the threshold,

3http://www.sageinformatics.com



regularisation and kernel parameters were optimised using
the PRESS statistic. A similar approach was used to produce
the first place entry for the corresponding benchmark in the
WCCI-2006 Performance Prediction Challenge, with a test
BER of 0.2757.

TABLE IV

RESULTS ON THEHIVA DATASET FOR THEAGNOSTICLEARNING

TRACK.

model kernel
100-fold validation validation set

BER AUC BER AUC

KRR linear 0.2547 0.8071 0.3311 0.6990

KRR poly (d = 2) 0.2444 0.7991 0.2535 0.7253

KRR poly (d = 3) 0.2523 0.8051 0.2467 0.7486

KRR RBF 0.2495 0.8092 0.2819 0.7604

A. Engineered Solution for the Prior Knowledge Track

For the prior knowledge track, we obtained 1024 bit
binary chemical fingerprints for each molecule, using the
generatemd tool from the ChemAxon chemoinformatics
suite4. These fingerprints, which represent structural proper-
ties of the molecule, are widely used in searching for similar
molecules in large databases, or for screening molecules for
putative pharmacological activity. These fingerprints provide
a reasonable starting point for investigation of theHIVA
benchmark. Work is currently ongoing to fine-tune these
chemical fingerprints and to investigate other forms of struc-
tural descriptors. Representative results are shown in Table V;
at the close of the development phase, the model based on a
quadratic kernel is in first place, according to the validation
set BER.

TABLE V

RESULTS ON THEHIVA DATASET FOR THEPRIOR KNOWLEDGE TRACK.

model kernel
100-fold validation validation set

BER AUC BER AUC

KRR linear 0.2957 0.7988 0.2548 0.7486

KRR poly (d = 2) 0.2914 0.7411 0.2476 0.6786

KRR poly (d = 3) 0.2888 0.7406 0.2629 0.7741

KRR poly (d = 4) 0.2989 0.7365 0.3444 0.7384

KRR RBF 0.4889 0.4573 0.5000 0.4519

A molecule can be viewed as a graph, with labeled vertices
representing the atoms and weighted edges representing
the chemical bonds. A walk through such a graph can
then be represented as a string (e.g.H-C-C=O) giving the
atoms visited and the strength of the bonds connecting
them. A histogram, recording the counts of strings repre-
senting all possible walks of lengthk or less, then provides
a sparsemolecular fingerprintdescribing the structure of
the molecule. It seems reasonable to suggest that similar

4http://www.chemaxon.com/

molecules will share many common paths, and so a simple
kernel function for small molecules simply computes the
inner products between histograms [22]. This kernel can be
computed efficiently using atrie or suffix tree structure [11].
Work is currently underway to investigate the use of such
kernels for theHIVA dataset and on data integration, to
assimilate kernels based on different sources of information.

V. RESULTSOBTAINED ON THE NOVA DATASET

The NOVA dataset consists of messages posted to var-
ious Usenet newsgroups, with messages posted to groups
pertaining to religion or politics forming the positive class.
For the Agnostic Learning track all words containing digits
were removed and all letters converted to lower case. Short
words with less than three letters were discarded, along with
≈ 2000 very common words. All words were then truncated
to a maximum of seven letters. The input vector for each
message then records the number of occurrences of each
of 16,969 remaining distinct words comprising the corpus.
Table VI shows representative results obtained by applying
KRR models, with standard kernels and automated model
selection to the standardized data. This simple approach
appears to give highly competitive results, and the linear and
cubic KRR classifiers have yet to be surpassed in terms of
validation set BER.

TABLE VI

RESULTS ON THENOVA DATASET FOR THEAGNOSTICLEARNING

TRACK.

model kernel
100-fold validation validation set

BER AUC BER AUC

KRR linear 0.0491 0.9878 0.0440 0.9968

KRR poly (d = 2) 0.0550 0.9862 0.0640 0.9955

KRR poly (d = 3) 0.0569 0.9854 0.0044 0.9947

KRR RBF 0.0635 0.9828 0.0480 0.9942

A. Engineered Solution for the Prior Knowledge Track

TheNOVA benchmark provides greater scope for engineer-
ing the data than many of the other benchmarks included
in the challenge. Messages posted to newsgroups are often
typed in haste and submitted without proof-reading. We
therefore perform automated correction of mis-spellings as
an optional stage in the pre-processing of the data, in order
to improve the accuracy of term-matching. Many words vary
only due to the presence of a suffix, which does not affect the
information conveyed by the word. Stemming aims to strip
redundant suffixes to obtain thestemor root of the word, e.g.
reducing “fisher”, “fishing” or “fished” to the stem “fish”.
Here we use the UEA-Lite stemmer5. Lastly, we adopt the
term frequency-inverse document frequency (TF-IDF) coding
scheme commonly used in text retrieval problems [18]. The

5http://www.cmp.uea.ac.uk/Research/stemmer



term frequency within a document is given by

tf =
ni

∑

k
nk

,

wherenk records the number of occurrences of thekth term.
The inverse document frequency,

idf = log

{

|D|

|dk ⊃ ti|

}

provides a measure of the importance of a term, where
|D| represents the number of documents in the corpus and
|dk ⊃ ti| is the number of documents in which termti
appears. Rather than using a simple count, we usetf · idf ,
which has the effect of suppressing common terms, while
amplifying rare, but informative terms. Table VII shows some
preliminary results, note that we have been able to improve
marginally on the performance of the equivalent models
from the Agnostic Learning Track. Stemming appears to be
helpful, providing the lowest validation set BER recorded so
far, however the automated spell checking appears to have
been too aggressive, and we are in the process of fine-tuning
this element of the system.

TABLE VII

RESULTS ON THENOVA DATASET FOR THEPRIOR KNOWLEDGE TRACK.

model pre-
processing

cross validation validation set

BER AUC BER AUC

KRR none 0.0432 0.9894 0.0540 0.9886

KRR stemming 0.0504 0.9890 0.0360 0.9878

KRR spell+stem 0.0626 0.9817 0.0540 0.9782

Again as newsgroups are organised in an hierarchi-
cal manner, an alternative approach would involve the
creation of a number of expert models, each of which
is used to distinguish between different groups at the
top level (e.g.alt.*-v-comp.*), an intermediate level
(e.g. comp.sys.*-v-talk.politics.*) or the lowest
level (e.g.comp.graphics-v-talk.politics.misc).
These experts then provide the input features for a classifier
used to identify messages posted to groups relating to reli-
gion or politics. This approach will be investigated at a later
stage, although the performance of single classifiers, given
appropriate pre-processing, is already good.

VI. RESULTSOBTAINED ON THE SYLVA DATASET

The SYLVA dataset describes the distribution of different
tree species in four wilderness areas within the Roosevelt
National Forest, located in northern Colorado, according to
a set of cartographic variables [2], describing geographical
location, terrain and soil type. While the original data are
partitioned into classes representing seven different tree
species (Spruce-Fir, Lodgepole Pine, Ponderosa Pine, Cot-
tonwood/Willow, Aspen, Douglas-Fir and Krummholz), the
aim of the SYLVA benchmark is to distinguish between
Ponderosa Pine and all other species. For the Agnostic Learn-
ing track, the input vector is formed by the concatenation

of cartographic features representing four patterns from the
original dataset. Two of these patterns are used to decide
the label and two are irrelevant (the positive class consisting
of records where both key patterns represent Ponderosa
Pine, the negative pattern consisting of records where neither
represents Ponderosa Pine). This implies that half of the 108
input features are distractors and the remainder exhibit some
degree of redundancy. Table VIII shows representative results
for automated learning methods, using standard kernels (see
[4] for further details).

TABLE VIII

RESULTS ON THESYLVA DATASET FOR THEAGNOSTICLEARNING

TRACK.

model kernel
100-fold validation validation set

BER AUC BER AUC

KRR linear 0.0149 0.9982 0.0069 0.9980

KRR poly (d = 2) 0.0077 0.9991 0.0045 0.0990

KRR poly (d = 3) 0.0078 0.9990 0.0045 0.9991

KRR RBF 0.0079 0.9990 0.0049 0.9991

A. Engineered Solution for the Prior Knowledge Track

For the Prior Knowledge track, the irrelevant input features
are discarded, which should substantially reduce the difficulty
of the task. The training set provides details of 26,172 distinct
patterns from the originalCOVTYPE dataset. Table IX shows
the distribution of cover type for each of the four wilderness
areas, note that Ponderosa Pine are not found in the Rawah
or Neota wilderness areas. In addition Ponderosa Pine are
only found to exist in thirteen (1–6, 10, 11, 13, 14, 16,
17, and 32) of the forty soil types. We can therefore pre-
classify any example containing a sub-pattern from Rawah
or Neota or from any other soil type as belonging to the
negative class. This leaves only 1,335difficult patterns that
must be classified. This is well within the reach of a kernel
ridge regression model. A KRR model with an RBF kernel
achieves a validation set BER of 0.0041 (joint 4th place)
and an AUC of 0.9992, and performs slightly better than the
corresponding Agnostic Track model.

VII. CONCLUSIONS

In this paper, we have presented solutions to both tracks
of the IJCNN-07 Agnostic Learning versus Prior Knowledge

TABLE IX

COVER TYPE BY WILDERNESS AREA.

Cover Type Rawah Neota
Comanche Cache la

Peak Poudre

Spruce-Fir 4779 796 3919 0
Lodgepole Pine 6635 410 5609 135
Ponderosa Pine 0 0 663 947
Cottonwood/Willow 0 0 0 137
Aspen 174 0 245 0
Douglas-Fir 0 0 373 453
Krummholz 228 104 565 0

Total 11816 1310 11374 1672



Challenge. The reference solutions for the Agnostic Learn-
ing track rely on the use of a limited range of standard
kernel functions and an automated model selection scheme
to achieve a good level of generalisation performance. The
prior knowledge solutions are currently placed first or joint
first on four of the five benchmarks (ADA, GINA, HIVA and
NOVA), third on SYLVA and also leading overall. However,
these results are based on the validation set performance,
which is known to have a high variance, and so the final
standings may well be very different! It is interesting to see
however that the provision of prior knowledge, suggesting
solutions that exploit any hidden structure of the problem,or
encouraging the use of bespoke kernels, has had relatively
little effect on the results. The only dataset where the Prior
Knowledge model performed appreciable better (GINA), and
there the difference in performance seems due solely to
the deletion of irrelevant input features, rather than the
incorporation of prior knowledge, This suggests perhaps
that automated model selection procedures are becoming a
genuinely practical proposition (or alternatively just that we
have not been sufficiently imaginative in applying our prior
knowledge!;-).
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