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Abstract— While the model parameters of many kernel learn-
ing methods are given by the solution of a convex optimisation
problem, the selection of good values for the kernel and
regularisation parameters, i.e. model selection, is much less
straight-forward. This paper describes a simple and efficient
approach to model selection for weighted least-squares support
vector machines, and compares a variety of model selection
criteria based on leave-one-out cross-validation. An external
cross-validation procedure is used for performance estimation,
with model selection performed independently in each fold to
avoid selection bias. The best entry based on these methods
was ranked in joint first place in the WCCI-2006 performance
prediction challenge, demonstrating the effectiveness of this
approach.

I. I NTRODUCTION

Kernel learning methods, such as the least-squares support
vector machine (LS-SVM) [12] are attractive because they al-
low the construction of powerful non-linear classifiers, using
only relatively simple mathematical and computational tech-
niques. The model parameters of an LS-SVM are given by the
solution of a system of linear equations, which can be found
efficiently via Cholesky factorisation. The generalisation per-
formance of the LS-SVM is however, heavily dependent on
themodel selectionprocess, in this case the careful selection
of an appropriate kernel function and good values for the
regularisation and kernel parameters. This paper is concerned
with model selection strategies based on minimisation of the
leave-one-out cross-validation estimate of a range of model
selection criteria, which can be performed very efficiently for
this class of kernel learning methods. The aim of the WCCI-
2006 Performance Prediction Challenge (PPC) is to identify
accurate methods for predicting the performance of statistical
classifiers on unseen test data, for use in model selection
and model evaluation. The challenge takes place over a
suite of five benchmark datasets,ADA, GINA, HIVA, NOVA
andSYLVA, each having pre-defined training, validation and
test partitions. The final performance assessment is based
on a combination of the Balanced Error Rate (BER) of
the classifier over the test partition and the accuracy of
the predicted balanced error rate generated by the model
selection procedure. A number of features of the performance
prediction challenge warrant serious consideration, and are
discussed in the remainder of this section.

A. The Balanced Error Rate (BER) Criterion

TABLE I

CONFUSION MATRIX FOR TWO-CLASS PATTERN RECOGNITION.
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The Balanced Error Rate (BER) statistic is the average of
the misclassification rates on examples drawn from positive
and negative classes (denoted byC+ and C− respectively),
i.e.

BER =
1
2

[
b

a + b
+

c

c + d

]
,

wherea, b, c and d are entries in theconfusion matrixfor
a two-class pattern recognition problem, shown in Table I.
Clearly the balanced error rate only coincides with the more
traditional misclassification rate if there are an equal number
of positive and negative examples, in which casea+b = c+d.
However, the relative class frequencies in the performance
prediction challenge benchmarks are skewed in favour of
the negative class; in the case of theHIVA and SYLVA
benchmarks the ratios are skewed rather heavily in favour of
the negative class. We must therefore tailor our approach to
account for the unequal weight assigned to false-negative and
false-positive errors in the performance assessment criterion.
This can be accomplished via a number of means, including
altering the bias parameters of the classifier or differentially
weighting positive and negative examples during the training
procedure. Both of these approaches are investigated in this
study.

B. Over-Fitting in the Model Selection Process

Let G(θ) represent the true test error of a classifier with
parametersθ, andg(θ|D) an estimate of the true test error
based on a sample of dataD. In the context of model
selection,D, might refer to an independentvalidation set,
or the set of validation partitions arising in (leave-one-out)
cross-validation. The expected error of the estimator can be



broken down intobias andvariancecomponents [6],

ED
{

[g(θ;D)−G(θ)]2
}

= ED {g(θ;D)−G(θ)}2

+ ED
{

[g(θ;D) − ED {g(θ;D)}]2
}

where the expectations are taken over all data sets,D,
of fixed size. The first term, the squaredbias, is low if
on average the difference between the true test error and
estimated error is small, i.e. the bias represents degree to
which the estimated errorsystematicallydiffers from the true
test error. The second component, thevariance, essentially
reflects the sensitivity of the estimator to the particular
choice of data over which it is evaluated. Note that the
variance can normally be expected to fall as the size of
the sample of data,D, increases. The leave-one-out cross-
validation estimator is known to be approximately unbiased
[8]. This is a reassuring, but not essential, property for a
model selection criterion as it suggests thaton averagethe
vector of model parameters minimising the model selection
criterion are approximately the same as those minimising the
true test error. However, the leave-one-out estimator generally
exhibits a higher variance than, for example, thek-fold cross-
validation estimator e.g. [7]. This is an undesirable property
of a model selection criterion as the “optimal” parameters,
θ, will be sensitive to the sample of data used. The relatively
high variance of the leave-one-out estimator has a number of
significant implications for the model selection process:

1) Over-fitting of the Model Selection Criterion:During
the model selection process, the parametersθ are iteratively
modified so as to minimise the value of the model selection
criterion. However, the value of the model selection criterion
can be considered to comprise of two components, a compo-
nent that is closely related to generalisation performance, and
a component that is sensitive to the characteristics specific
to the particular sample of data on which it is evaluated. It
seems reasonable to expect that the largest reductions in the
model selection criterion should come from changes in the
parameters that result in a reduction in the true test error.
If the number of parameters to be determined during model
selection is relatively small, the model selection process is
likely to be dominated by changes that genuinely improve
generalisation. On the other hand if the number of parameters
is relatively large, there may be sufficient degrees of freedom
that the model selection becomes sensitive to the particular
sample of data used, i.e.over-fittingwill occur. It is therefore
prudent to avoid the selection of a large number of parameters
on the basis of a model selection criterion, unless it is known
to have a low variance.

2) Feature Selection:Many of the challenge datasets
are characterised by a large number of features relative to
the number of training patterns. If feature selection were
performed as part of the model selection process, this would
vastly inflate the degrees of freedom available for over-
fitting the model selection criterion, as there is essentially
an extra degree of freedom associated with each feature. In
practice, performing feature selection on the basis of leave-

one-out cross-validation criteria oftendegradesgeneralisation
performance in the presence of a large number of features due
to over-fitting of the model selection criterion. Fortunately,
least-squares support vector machines generally perform well
in high-dimensional spaces, due to the use of formal regular-
isation [13], and so we are able to neglect a feature selection
stage in this study.

3) Model Selection versus Performance Prediction:For
performance evaluation purposes, we require a criterion that
is both unbiased and also exhibits a low variance. Leave-one-
out cross-validation based estimators, while approximately
unbiased, are likely to be sub-optimal performance evaluation
criteria due to their high variance1. However, in general, one
should be cautious in using the same criterion for model
selection and performance evaluation; any criterion that has
been directly optimised during the model selection process
is likely to result in a significantly optimistic estimate of the
true generalisation performance, due to the variance of the
estimator.

C. Reliability of Validation Set Statistics

The design of the performance prediction challenge bench-
marks is such that the test set is approximately ten times
larger than the training set, which in turn is approximately ten
times larger than the validation set, with the ratio of positive
and negative examples being closely matched in all three
partitions of the available data. However, optimising the bal-
anced error rate on the validation set, so as to achieve a good
ranking in themodel developmentstage of the challenge, is a
risky strategy as the variance of the validation setestimateof
the test BER is likely to be high, due to the small size of the
validation set. In essence, this means it might be possible to
“over-fit” the hyper-parameters of the model to the validation
set. This is especially true for theHIVA benchmark, where
the validation set contains only 14 positive examples in
addition to the 370 negative examples. As the balanced error
rate is very sensitive to errors in the minority class, the
validation set BER will be very sensitive to the sampling
of these positive examples. If fourteen “clearly positive”
examples were chosen, the BER will be unrealistically low,
if fourteen “difficult” examples were selected the BER will
be unduly high. As there are only fourteen positive patterns,
either of these scenarios could easily occur, in which case
the validation set BER would be a poor predictor of the
test set BER. In this study, we have therefore chosen to
largely ignore the validation set performance, available from
the challenge web-site, in favour of estimators likely to have
a lower variance. It will be interesting to see, in hindsight,
whether this was a good strategy at the conclusion of the
challenge!

1Leave-one-out cross-validation is typically used in the analysis of very
small datasets, where the relatively high variance of the leave-one-out
estimator is offset by the stability resulting from the greater size of the
training partition than is possible using conventionalk-fold cross-validation.



II. M ETHOD

In this section, we give a brief overview of the Least-
Squares Support Vector Machine (LS-SVM), including a
weighted variant suitable for the performance prediction
challenge, before going on to describe an efficient closed-
form implementation of the leave-one-out cross-validation
method for least-squares kernel learning methods. This forms
the basis of a family of model selection procedures, based
on the leave-one-out cross-validation estimates of a variety
of model selection criteria.

A. Least-Squares Support Vector Machines

Assume we are given labelled training data,D =
{(xi, yi)}`

i=1, where xi ∈ X ⊂ Rd is a vector of input
features describing theith example andyi ∈ {−1,+1} is
an indicator variable such thatyi = −1 if the ith example
is drawn from classC− and yi = +1 is drawn from class
C+. The Least-Squares Support Vector Machine (LS-SVM)
aims to construct a linear modelf(x) = w · φ(x) + b in a
fixed feature space,φ : X → F , that is able to distinguish
between examples drawn fromC− andC+, such that

x ∈
{
C+ if f(x) ≥ 0
C− otherwise .

However, rather than specifying the feature space,F directly,
it is implied by a kernel functionK : X ×X → R, giving the
inner product between the images of vectors in the feature
space,F , i.e. K(x,x′) = φ(x) · φ(x′). A common kernel
function is the isotropic Radial Basis Function (RBF) kernel

K(x,x′) = exp
{
−η‖x− x′‖2

}
, (1)

whereη is a kernel parameter controlling the sensitivity of
the kernel function. Other useful kernels include the linear,

K(x,x′) = x · x′ (2)

and polynomial kernels

K(x,x′) = (x · x′ + c)d (3)

where c and d are kernel parameters (d = 2 gives the
quadratic kernel andd = 3 the cubic kernel) in addition
to the Boolean kernel

K(x,x′) = (1 + η)x·x′
.

The model parameters(w, b) are given by the minimum of
a regularised [13] least-squares loss function,

L =
1
2
‖w‖2 +

1
2`µ

∑̀
i=1

[yi −w · φ(xi)− b]2 , (4)

where µ is a regularisation parameter controlling the bias-
variance trade-off [6]. The accuracy of an LS-SVM on test
data is critically dependent on the choice of good values for
thehyper-parameters, in this caseµ andη. The search for the
optimal values for such hyper-parameters is a process known
asmodel selection.

B. Training Algorithm

The regularised least-squares problem (4) can be solved via
a system of linear equations, with a computational complexity
of O(`3) operations, as follows: Minimising (4) can be recast
in the form of a constrained optimisation problem,

min J =
1
2
‖w‖2 +

1
2`µ

∑̀
i=1

ε2
i (5)

subject to

yi = w · φ(xi) + b + εi, ∀ i ∈ {1, 2, . . . , `}. (6)

The primal Lagrangian for this optimisation problem gives
the unconstrained minimisation problem,

L =
1
2
‖w‖2+ 1

2`µ

∑̀
i=1

ε2
i−

∑̀
i=1

αi {w · φ(xi) + b + εi − yi} ,

whereα = (α1, α2, . . . , α`) ∈ R` is a vector of Lagrange
multipliers. The optimality conditions for this problem can
be expressed as follows:

∂L
∂w

= 0 =⇒ w =
∑̀
i=1

αiφ(xi) (7)

∂L
∂b

= 0 =⇒
∑̀
i=1

αi = 0 (8)

∂L
∂εi

= 0 =⇒ αi =
εi

`µ
, (9)

∂L
∂αi

= 0 =⇒ w · φ(xi) + b + εi − yi = 0. (10)

Using (7) and (9) to eliminatew and ε = (ε1, ε2, . . . , ε`),
from (10), we find that∑̀

j=1

αjφ(xj) · φ(xi) + b + `µαi = yi. (11)

Noting thatK(x,x′) = φ(x) · φ(x′), the system of linear
equations can be written more concisely in matrix form as[

K + µ`I 1
1T 0

] [
α
b

]
=

[
t
0

]
. (12)

From (7) and noting thatK(x,x′) = φ(x)·φ(x′), the output
of the LS-SVM can be written in terms of thedual model
parameters,(α, b), as

f(x) =
∑̀
i=1

αiK(xi,x) + b.

C. Efficient Implementation Via Cholesky Factorisation

A more efficient training algorithm can be obtained, taking
advantage of the special structure of the system of linear
equations [12]. The system of linear equations (12) to be
solved in fitting a least-squares support vector machine can
be written as [

M 1
1T 0

] [
α
b

]
=

[
t
0

]
, (13)



whereM = K + µ`I. Unfortunately the matrix on the left-
hand side is not positive definite, and so we cannot solve
this system of linear equations directly using the Cholesky
factorisation. However, the first row of (13) can be re-written
as

M
(
α + M−11b

)
= y (14)

Rearranging (14), we see thatα = M−1 (y − 1b), using this
result to eliminateα, the second row of (13) can be written
as,

1T M−11b = 1T M−1y (15)

The system of linear equations can then be re-written as[
M 0
0T 1T M−11

] [
α + M−11b

b

]
=

[
y

1T M−1y

]
.

In this case, the matrix on the left hand side is positive-
definite, asM = K +µ`I is positive-definite and1T M−11
is positive since the inverse of a positive definite matrix is
also positive definite. The revised system of linear equations
can then be solved as follows: First solve

Mη = 1 and Mν = y, (16)

The model parameters of the least-squares support vector
machine are then given by

b =
1T ν

1T η
and α = ν − ηb.

The two systems of linear equations (16) can be solved
efficiently using the Cholesky decomposition ofM = RT R,
whereR is the upper triangular Cholesky factor ofM .

D. Weighted Least-Squares Support Vector Machines

For some applications, it may be preferable find the model
parameters(w, b) via minimisation of a regularisedweighted
least-squares loss function [12],

L =
1
2
‖w‖2 +

1
2µ`

∑̀
i=1

ζi [yi −w · φ(xi)− b]2 ,

whereζ = {ζ1, ζ2, . . . , ζ`} is a vector of weights associated
with each pattern. The optimal dual model parameters,(α, b)
are then given by the solution of a modified system of linear
equations,[

K + µ`W 1
1T 0

] [
α
b

]
=

[
y
0

]
, (17)

where W = diag
{(

ζ−1
1 , ζ−1

2 , . . . , ζ−1
`

)}
. The most com-

mon situation in which a weighted loss function is used
is where the proportions of positive and negative examples
in the training data are known not to be representative of
the operational class frequencies. A weighted loss function
is also appropriate if we wish to minimise the balanced
error rate, in order to balance the contribution of the sets of
positive and negative examples to the data misfit term of the

regularised loss function. In this case, the weighting factors
should be chosen according to

ζi =

{
`

2`+ if ti = +1
`

2`− otherwise
(18)

where`+ and `− represent the number of positive and neg-
ative examples respectively. Note that this is asymptotically
equivalent to re-sampling the data so that there are an equal
number of positive and negative examples (c.f. [4]).

E. Efficient Leave-One-Out Cross-Validation

The optimal values of the parameters of a Least-Squares
Support Vector Machine are given by the solution of a system
of linear equations (12), the matrix on the left-hand side of
which can be decomposed into block-matrix representation,
as follows:[

K + µ`I 1
1T 0

]
=

[
c11 cT

1

c1 C1

]
= C.

Let [α(−i); b(−i)] represent the parameters of the least-
squares support vector machine during theith iteration of
the leave-one-out cross-validation procedure, then in the first
iteration, in which the first training pattern is excluded,[

α(−1)

b(−1)

]
= C−1

1 [y2, . . . , y`, 0]T .

The leave-one-out prediction for the first training pattern is
then given by,

ŷ
(−1)
1 = cT

1

[
α(−1)

b(−1)

]
= cT

1 C−1
1 [y2, . . . , y`, 0]T

Considering the last̀ equations in the system of linear
equations (12), it is clear that[c1 C1] [α2, . . . , α`, b]T =
[y2, . . . , y`, 0]T , and so

ŷ
(−1)
1 = cT

1 C−1
1 [c1 C1]

[
αT , b

]T

= cT
1 C−1

1 c1α1 + c1 [α2, . . . , α`, b]
T

.

Noting, from the first equation in the system of linear
equations (12), thaty1 = c11α1 + cT

1 [α2, . . . , α`, b]
T , thus

ŷ
(−1)
1 = y1 − α1

(
c11 − cT

1 C−1
1 c1

)
Finally, via the block matrix inversion lemma,[

c11 cT
1

c1 C1

]−1

=
[

κ−1 −κ−1c1C−1
1

C−1
1 + κ−1C−1

1 cT
1 c1C−1

1 −κ−1C−1
1 cT

1

]
,

where κ = c11 − cT
1 C−1

1 c, and noting that the system of
linear equations (12) is insensitive to permutations of the
ordering of the equations and of the unknowns, we have that,

r
(−i)
i = yi − ŷ

(−i)
i =

αi

C−1
ii

. (19)

This means that, assuming the system of linear equations
is solved via explicit inversion ofC, a leave-one-out cross-
validation estimate of an appropriate model selection criterion
can be evaluated using information already available as a by-
product of training the least-squares support vector machine
on the entire dataset, with only a negligible additional com-
putational expense.



F. Efficient Implementation via Cholesky Factorisation

The coefficients of the kernel expansion,α, can be found
efficiently, via Cholesky factorisation, as described in Sec-
tion II-C. However, in order to perform the efficient leave-
one-out cross-validation procedure, we must also determine
the diagonal elements ofC−1 in an efficient manner. Using
the block matrix inversion formula, we obtain

C−1 =
[

M−1 + M−11S−1
M 1T M−1 −M−11S−1

M

−S−1
M 1T M−1 S−1

M

]
,

whereM = K + µ`I and SM = −1T M−11 = −1T η is
the Schur complement ofM . The inverse of the positive
definite matrix, M , can be computed efficiently from its
Cholesky factorisation, via theSYMINV algorithm [11],
for example using the LAPACK routineDTRTRI [2]. Let
R = [rij ]

n
i,j=1 be the lower triangular Cholesky factor of

the positive definite matrixM , such thatM = RRT .
Furthermore, let

S = [sij ]
n
i,j=1 = R−1,

where

sii =
1
rii

and sij = −sii

i−1∑
k=1

rikskj ,

represent the (lower triangular) inverse of the Cholesky
factor. The inverse ofM is then given byM−1 = ST S.
In the case of efficient leave-one-out cross-validation of
least-squares support vector machines, we are principally
concerned only with the diagonal elements ofM−1, given
by

M−1
ii =

i∑
j=1

s2
ij =⇒ C−1

ii =
i∑

j=1

s2
ij +

η2
i

SM

The computational complexity of the basic training algorithm
isO(`3) operations, being dominated by the evaluation of the
Cholesky factor. However, the computational complexity of
the analytic leave-one-out cross-validation procedure, when
performed as a by-product of the training algorithm, is
only O(`) operations. The computational expense of the
leave-one-out cross-validation procedure therefore becomes
increasingly negligible as the training set becomes larger.

G. Model Selection Criteria

While the optimal model parameters of the LS-SVM are
given by the solution of a simple system of linear equations,
(12) or (17), some form of model selection is required to de-
termine good values for thehyper-parameters, θ = (µ,η) in
order to maximise generalisation performance. The analytic
leave-one-out cross-validation procedure described in the pre-
vious section can easily form the basis of an efficient model
selection strategy [5] based on a weighted version of Allen’s
predicted residual sum-of-squares (PRESS) statistic [1],

PRESS(θ) =
∑̀
i=1

ζi

{
r
(−i)
i

}2

.

However the PRESS statistic is best suited to regression prob-
lems, and more sophisticated model selection criterion may
be preferable in the context of statistical pattern recognition.
For instance, the leave-one-out cross-validation estimate of
the weighted error rate is given by

ERROR(θ) =
∑̀
i=1

ζiΨ
{

tir
(−i)
i − 1

}
whereΨ{·} is the unit step function,

Ψ {x} =
{

1 if x >= 0
0 otherwise .

The leave-one-out estimate of the balanced error rate (BER)
is obtained by setting the weighting coefficients to give equal
weight to the sets of positive and negative examples, that
is according to (18). The leave-one-out balanced error rate
ought to provide a good model selection criterion for the
performance prediction challenge as the balanced error rate
over the test set forms the major component of the final rank-
ing criterion. However, while the leave-one-out estimate of
the BER provides a reasonable performance estimate for the
purposes of the challenge, it is not entirely suitable for model
selectionpurposes, as we would prefer a continuous function
that is more amenable to numerical optimisation routines.
One approach would be to approximate the discontinuous
unit step function by a continuous approximation, such as
the logistic function [3],

Ψ̃{x} =
1

1 + exp{−γx}
, (20)

whereγ is a parameter governing the accuracy of the approxi-
mation. Alternatively, we may opt for an upper bound on the
balanced error rate, obtained by substituting the weighted
hinge loss for the step function,

HINGE(θ) =
∑̀
i=1

ζi

[
tir

(−i)
i

]
+

or the weighted squared hinge loss,

HINGE2(θ) =
∑̀
i=1

ζi

[
tir

(−i)
i

]2

+

where[x]+ = max{0, x} (see Figure 1). A final model selec-
tion criterion is concerned only with the quality of the relative
ranking of patterns under leave-one-out cross-validation, via
maximising the area under the receiver operating character-
istic (AUC). Equivalently, one could instead minimise the
modifiedWilcoxon-Mann-Whitney [9, 14] statistic,

WMW(θ) =
1

`+`−

∑
i:yi=+1

∑
j:yj=−1

Ψ
{

ŷ
(−i)
i − ŷ

(−j)
j

}
,

where again, the smooth approximation to the step function
(20) can be employed to obtain a continuous selection
criterion. The hyper-parameters of the (weighted) LS-SVM,
θ, can then be optimised by minimisation of any of these



model selection criteria via, for example, the Nelder-Mead
simplex [10] method, as implemented by thefminsearch
routines of the MATLAB Optimisation Toolbox.
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Fig. 1. The hinge and squared hinge loss bounds on the zero-one loss.

III. T HE CHALLENGE BENCHMARK DATASETS

Table III shows summary information on each of the five
challenge benchmark datasets. The class ratios for theHIVA
andSYLVAbenchmarks are highly skewed, with a very low
prior probability for the positive classP (C+). The GINA,
HIVA and especially theNOVAbenchmarks also have a
very large number of features, given the number of training
examples. Note however that the number of features that have
a non-zero variance over the training set,dnc, is significantly
less than the total number of features. Obviously features that
have zero variance over the training set are uninformative
and can safely be omitted from the analysis. Many of the
benchmarks also include a large number of binary features,
with a high degree of sparsity.

TABLE II

SUMMARY OF THE DIMENSIONS AND COMPOSITION OF THE FIVE

CHALLENGE BENCHMARK DATASETS.

ADA GINA HIVA NOVA SYLVA

`+ 1029 1550 135 499 805

`− 3118 1603 3710 1255 12281

P (C+) 0.248 0.492 0.035 0.285 0.062

d 48 970 1617 16969 216

dnc 46 970 1617 12398 211

sparsity 72.1% 0.0% 91.8% 98.1% 76.7%

The following pre-processing steps were taken for each
benchmark dataset:ADA - logarithmic transform of features
1 and 3, features 4 and 5 discretized via thresholding at
44 and respectively, standardisation of continuous features.
GINA - all features scaled by255−1. HIVA - no pre-
processing required.NOVA - no pre-processing required.
SYLVA- standardisation of continuous features, reduction of

training set using features never associated with the positive
class.

IV. RESULTS

The aim of this study is to evaluate a range of criteria
for leave-one-out cross-validation based model selection of
weighted least-squares support vector machines. A 100-fold
validation approach was used in order to obtain a low-
variance estimator of the true test balanced error rate. In each
of 100 trials, the data are randomly partitioned into a training
set containing approximately 90% of the available data and a
test set containing the remaining patterns. Model selection is
performed independently in each trial via minimisation of a
leave-one-out model selection criterion via the Nelder-Mead
simplex optimisation method [10]. A total of 70 experiments
were performed, based on different combinations of model
selection criteria, kernel function and the use of weighting
factors in the training and/or model selection procedures. The
results of these experiments are shown in Table III. The best
performance on each benchmark are shown in bold.

Table IV shows the weights resulting from a regression
analysis of the data given in Table III. The 100-fold validation
estimates of the test balanced error rate were standardised
to have a zero mean and unit variance. A linear least-
squares model was then used to predict the estimate of the
test balanced error rate using boolean features representing
the choice of model selection criterion (PRESS, HINGE1,
HINGE2, WMW and ERATE), the use of weighting factors
during training and model selection (Training and Selection
respectively) and the choice of kernel function (Linear,
Quadratic, Cubic, Boolean and RBF). The results suggest
that the use of weighting factors in training and/or model
selection does not confer a significant advantage and that,
unsurprisingly, the choice of kernel is data dependent. The
choice of model selection criterion also seems data depen-
dent, but that relatively good performance can be achieved
using the simple PRESS statistic, even though this is better
suited to regression problems, obviating the need to employ
a more complex criteria.

Three final submissions have been made to the WCCI-
2006 performance prediction challenge website. The first,
shown in Table V, consists of models selected for each
benchmark dataset on the basis of the leave-one-out estimate
of the balanced error rate, which is also used as the final
performance estimate. In this case, it would be reasonable to
expect that the predicted balanced error rate will be unduly
low as the estimator has also been used as the model selection
criterion.

Table VI shows the second final submission. In this
case the final model choice is based on the leave-one-out
cross-validation estimate of the balanced error rate, but the
performance estimate is based on an independent 100-fold
validation estimate. This represents, in the author’s opinion,
the best practice methodology as the performance estimate
has not been biased by the model selection process in any



TABLE III

ESTIMATE OF THE TESTBALANCED ERRORRATE BASED ON 100-FOLD VALIDATION FOR THE WCCI-2006PERFORMANCE PREDICTION CHALLENGE

BENCHMARKS FOR A VARIETY OF LEAVE-ONE-OUT CROSS-VALIDATION BASED MODEL SELECTION CRITERIA.

Experiment
Selection
Criterion

Weighted
Training

Weighted
Selection

Kernel ADA GINA HIVA NOVA SYLVA

01 PRESS no no Linear 0.1766 0.1366 0.2727 0.0524 0.0156
02 PRESS no no Quadratic 0.1687 0.0562 0.2769 0.0574 0.0098
03 PRESS no no Cubic 0.1701 0.0482 0.2549 0.0653 0.0100
04 PRESS no no Boolean 0.1649 0.0550 0.2622 0.0669 0.1155
05 PRESS no no RBF 0.1676 0.0542 0.2530 0.0700 0.1160
06 PRESS yes no Linear 0.1740 0.1360 0.2724 0.0532 0.0124
07 PRESS yes no Quadratic 0.1740 0.0562 0.2848 0.0551 0.0101
08 PRESS yes no Cubic 0.1685 0.0481 0.2658 0.0643 0.0102
09 PRESS yes no Boolean 0.1763 0.0560 0.2654 0.0686 0.1151
10 PRESS yes no RBF 0.1754 0.0533 0.2754 0.0664 0.1.15
11 PRESS yes yes Linear 0.1757 0.1354 0.2830 0.0506 0.0236
12 PRESS yes yes Quadratic 0.1691 0.0550 0.2965 0.0536 0.0098
13 PRESS yes yes Cubic 0.1681 0.0499 0.2654 0.0627 0.0106
14 PRESS yes yes Boolean 0.1736 0.0528 0.2828 0.0663 0.1153
15 PRESS yes yes RBF 0.1670 0.0533 0.2972 0.0670 0.1148
16 HINGE1 no no Linear 0.1880 0.1366 0.2906 0.0753 0.0670
17 HINGE1 no no Quadratic 0.1721 0.0593 0.2741 0.0828 0.0106
18 HINGE1 no no Cubic 0.1725 0.0515 0.2551 0.0794 0.0099
19 HINGE1 no no Boolean 0.1723 0.0557 0.2563 0.0938 0.1150
20 HINGE1 no no RBF 0.1751 0.0560 0.2677 0.0897 0.1153
21 HINGE1 yes no Linear 0.1876 0.1398 0.2824 0.0688 0.0477
22 HINGE1 yes no Quadratic 0.1765 0.0547 0.2740 0.0796 0.0115
23 HINGE1 yes no Cubic 0.1737 0.0494 0.2549 0.0815 0.0099
24 HINGE1 yes no Boolean 0.1976 0.0540 0.2615 0.0887 0.1159
25 HINGE1 yes no RBF 0.1972 0.0560 0.2817 0.0954 0.1152
26 HINGE1 yes yes Linear 0.1974 0.1373 0.2699 0.0567 0.0721
27 HINGE1 yes yes Quadratic 0.1699 0.0550 0.2757 0.0706 0.0100
28 HINGE1 yes yes Cubic 0.1738 0.0497 0.2784 0.0820 0.0107
29 HINGE1 yes yes Boolean 0.1733 0.0527 0.2753 0.0835 0.1155
30 HINGE1 yes yes RBF 0.1716 0.0548 0.2693 0.0829 0.1153
31 HINGE2 no no Linear 0.1783 0.1347 0.2670 0.0546 0.0155
32 HINGE2 no no Quadratic 0.1667 0.0562 0.2628 0.0600 0.0114
33 HINGE2 no no Cubic 0.1701 0.0491 0.2581 0.0663 0.0094
34 HINGE2 no no Boolean 0.1689 0.0562 0.2603 0.0738 0.1152
35 HINGE2 no no RBF 0.1686 0.0517 0.2613 0.0720 0.1150
36 HINGE2 yes no Linear 0.1801 0.1343 0.2723 0.0557 0.0130
37 HINGE2 yes no Quadratic 0.1667 0.0538 0.2689 0.0559 0.0107
38 HINGE2 yes no Cubic 0.1661 0.0504 0.2639 0.0645 0.0103
39 HINGE2 yes no Boolean 0.1929 0.0538 0.2649 0.0873 0.1153
40 HINGE2 yes no RBF 0.1818 0.0539 0.2767 0.0677 0.1152
41 HINGE2 yes yes Linear 0.1747 0.1362 0.2797 0.0488 0.0275
42 HINGE2 yes yes Quadratic 0.1694 0.0556 0.2863 0.0524 0.0101
43 HINGE2 yes yes Cubic 0.1670 0.0522 0.2588 0.0626 0.0096
44 HINGE2 yes yes Boolean 0.1717 0.0523 0.2936 0.0680 0.1149
45 HINGE2 yes yes RBF 0.1681 0.0531 0.2860 0.0667 0.1153
46 WMW no no Linear 0.1691 0.1366 0.2749 0.0502 0.0109
47 WMW no no Quadratic 0.1700 0.0549 0.2621 0.0485 0.0091
48 WMW no no Cubic 0.1688 0.0517 0.2786 0.0584 0.0102
49 WMW no no Boolean 0.1672 0.0526 0.2660 0.0633 0.1167
50 WMW no no RBF 0.1692 0.0544 0.2675 0.0666 0.1152
51 WMW yes no Linear 0.1769 0.1384 0.2740 0.0509 0.0122
52 WMW yes no Quadratic 0.1727 0.0543 0.2632 0.0447 0.0095
53 WMW yes no Cubic 0.1675 0.0497 0.2784 0.0606 0.0097
54 WMW yes no Boolean 0.1746 0.0543 0.2638 0.0612 0.1159
55 WMW yes no RBF 0.1714 0.0536 0.2735 0.0614 0.1160
56 ERATE no no Linear 0.1748 0.1346 0.2745 0.0537 0.0112
57 ERATE no no Quadratic 0.1681 0.0542 0.2627 0.0522 0.0096
58 ERATE no no Cubic 0.1682 0.0503 0.2665 0.0590 0.0107
59 ERATE no no Boolean 0.1709 0.0529 0.2571 0.0701 0.1159
60 ERATE no no RBF 0.1685 0.0525 0.2711 0.0723 0.1157
61 ERATE yes no Linear 0.1821 0.1339 0.2735 0.0534 0.0844
62 ERATE yes no Quadratic 0.1689 0.0560 0.2839 0.0514 0.0115
63 ERATE yes no Cubic 0.1716 0.0484 0.2624 0.0640 0.0106
64 ERATE yes no Boolean 0.1827 0.0540 0.2628 0.0640 0.1160
65 ERATE yes no RBF 0.1824 0.0527 0.2797 0.0657 0.1155
66 ERATE yes yes Linear 0.1765 0.1329 0.2745 0.0515 0.0116
67 ERATE yes yes Quadratic 0.1728 0.0529 0.2742 0.0542 0.0095
68 ERATE yes yes Cubic 0.1684 0.0495 0.2740 0.0635 0.0101
69 ERATE yes yes Boolean 0.1721 0.0532 0.2807 0.0639 0.1148
70 ERATE yes yes RBF 0.1710 0.0525 0.2787 0.0652 0.1159



TABLE IV

WEIGHTS OBTAINED BY REGRESSION ANALYSIS OF100-FOLD

VALIDATION ESTIMATE OF THE TEST BALANCED ERROR RATE.

Factor ADA GINA HIVA NOVA SYLVA

PRESS -0.4729 +0.0049 -0.1077 -0.2036 -0.0615

HINGE 1 +0.6871 +0.0375 -0.3774 +1.4446 +0.1203

HINGE 2 -0.2796 -0.0005 -0.4189 +0.0037 -0.0554

WMW -0.6645 +0.0082 -0.1184 -0.7283 -0.0830

ERATE -0.2087 -0.0265 -0.3169 -0.2913 +0.0165

Training +0.8832 -0.0085 +0.4943 -0.0806 +0.0420

Selection -0.7922 -0.0132 +0.8001 -0.3271 -0.0236

Linear +0.5679 +1.9856 +0.1422 -0.7780 -0.5275

Quadratic -0.6471 -0.4272 +0.0343 -0.5183 -0.9257

Cubic -0.7513 -0.5911 -0.8821 +0.1824 -0.9274

Boolean +0.0629 -0.4682 -0.6189 +0.7011 +1.1598

RBF -0.1711 -0.4754 -0.0149 +0.6379 +1.1577

TABLE V

PERFORMANCE OF THE FIRST FINAL SUBMISSION, MODEL CHOICE AND

PERFORMANCE ESTIMATION BASED ON LEAVE-ONE-OUT BER.

Dataset
Balanced Error

Guess
Guess Test

Train Valid Test Error Score

ADA 0.1490 0.1542 0.1845 0.1683 0.0162 0.2007

GINA 0.0000 0.0000 0.0461 0.0434 0.0027 0.0485

HIVA 0.0180 0.0216 0.2804 0.2475 0.0329 0.3131

NOVA 0.0000 0.0000 0.0445 0.0436 0.0009 0.0448

SYLVA 0.0028 0.0029 0.0067 0.0048 0.0018 0.0085

Overall 0.0340 0.0357 0.1124 0.1105 0.0034 0.1152

way. Note that the guess error for this method is very much
lower.

TABLE VI

SECOND FINAL SUBMISSION, MODEL CHOICE VIA LEAVE-ONE-OUT

BER, PERFORMANCE ESTIMATION VIA100-FOLD VALIDATION BER.

Dataset
Balanced Error

Guess
Guess Test

Train Valid Test Error Score

ADA 0.1490 0.1542 0.1845 0.1742 0.0103 0.1947

GINA 0.0000 0.0000 0.0461 0.0470 0.0009 0.0466

HIVA 0.0180 0.0216 0.2804 0.2776 0.0028 0.2814

NOVA 0.0000 0.0000 0.0445 0.0470 0.0025 0.0464

SYLVA 0.0028 0.0029 0.0067 0.0065 0.0002 0.0067

Overall 0.0340 0.0357 0.1124 0.1105 0.0034 0.1152

V. CONCLUSIONS

In this study, we have investigated a variety of model
selection criteria for (weighted) least-squares support vector
machines, based on leave-one-out cross-validation estimators.
A useful conclusion that may be drawn from the results
obtained suggests that the optimal choice of model selection
criterion is data dependent (and we cannot knowa-priori
which will perform best) and so it is reasonable to use a
simple, mathematically tractable criterion, such as Allen’s

PRESS statistic. This study generated the joint winning entry
in the challenge, finishing first in terms of average score and
second in terms of average ranking. The best model also
exhibited the second highest area under the receiver operat-
ing characteristic on the test set. The study also generated
two individual data set winners (HIVA and NOVA). This
demonstrates that leave-one-out cross-validation provides an
effective means of model selection for least-squares support
vector machines, but that an external means of performance
estimation is required. If performance evaluation is performed
using cross-validation, it is important that the model selection
process is performed separately in each trial in order to avoid
selection bias.
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