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Abstract— In this paper, we present a simple mathematical
trick that simplifies the derivation of Bayesian treatments of
a variety of sparse kernel learning methods. The incomplete
Cholesky factorisation due to [1] is used to transform the dual
parameter space, such that the covariance matrix of the Gaussian
prior over model parameters becomes the identity matrix. The
regularisation term is then the familiar weight-decay regulariser,
allowing the Bayesian analysis to proceed straight-forwardly via
the methods developed by [2–4]. As a bye-product, the incomplete
Cholesky factorisation algorithm also identifies a subset of the
training data forming an approximate basis for the remaining
data in feature space, resulting in a sparse model. Bayesian
treatments of the kernel ridge regression algorithm [5], with both
constant and input dependent variance structures, are given as
illustrative examples of the proposed technique, which we hope
will be more widely applicable.

I. INTRODUCTION

The “kernel trick” provides a mathematically elegant means
of constructing powerful non-linear variants of classical (lin-
ear) statistical methods, such as ridge regression [5, 6], Fisher
discriminant analysis [7, 8] and principal component analysis
[9, 10], as well as forming an integral component of more
recent developments such as the support vector machine [11,
12]. As a consequence of the linear nature of the underlying
learning algorithm, the optimal values of the primary model
parameters can normally be found very efficiently. However,
the generalisation performance of kernel learning methods is
often heavily dependant on the values of kernel and regu-
larisation parameters, which are most often determined via
minimisation of the cross-validation error [13] or theoretical
bounds on test error (e.g. [14]). Bayesian model selection
procedures have also been proposed for the support vector
machine [15] and least-squares support vector machine [16],
based on the evidence framework of [2–4]. This approach
is attractive as it provides a theoretically sound means of
selecting good values for all hyper-parameters, based solely
on the training data. The Bayesian approach can also be used
to provide a credible interval on model predictions.

In this paper, we present a simple trick allowing the ev-
idence framework to be applied to a broad class of sparse
kernel learning methods. For sparse kernel machines, the
non-spherical covariance structure of the Gaussian prior over
model parameters is inconvenient in estimating the number of

effective parameters used in updating the regularisation pa-
rameters. Therefore we simply transform the parameter space
such that the prior becomes spherical, the evidence framework
can then be applied without further modification. The required
transformation and simultaneous sparsification of the kernel
machine are achieved using the incomplete Cholesky factori-
sation algorithm due to [1]. Sparsity is an important issue
in large-scale applications of kernel learning methods as the
computational complexity of the training procedures are often
as high as

���������
operations, where

�
is the number of training

patterns, whereas the sparse Bayesian methods considered here
typically have computational complexities of only

�����
	����
,

where
	�
��

is the number of non-zero parameters.

II. METHOD

A wide range of kernel learning methods, given training
data ����� �������������� "!$#%�&��'(�����*)
+�-,/. !
construct a linear model1 0 �1�32546� ��7/� 498�:;���<�*)

in a fixed
feature space, = ��:?>@��A = � , that captures some statistical
dependency between pairs of patterns in

�
and

'
. Rather than

specify the feature space explicitly, the feature space is induced
by a kernel function B >C�EDF�GA �

defining the inner
product between vectors in = , i.e. B ���3!5�IHJ� � :C���<��8K:L�1��HM� .
A commonly encountered kernel function is the Radial Basis
Function (RBF) kernel,B ���N!5� H � �PO�Q@RTS  U �J,/.WV � �1X �ZY X H� � �\[ ! (1)

where the kernel parameters, ] � � V . ! V � !�^
^�^_! V  � , provide
individual control over the sensitivity of the kernel function
to each input variable. The optimal values of the model
parameters

4
are determined by minimising a regularised loss

function [17],` �146� � +U �-,a.Zb � 0 ���a�52c4d�e!c#%�c)gfih<jk<l 4 l � ! (2)

1The usual bias parameter, m , is omitted here purely to improve the clarity
of later derivations, but is included in practical implementations described in
section III.



where b � 8-!
8 ) is a convex function measuring the misfit
between the output of the model and the desired output,
for example the sum-of-squares error b � 0 �1�g2546�e!5#*) � � # Y0 ���32c46��� � . The regularisation parameter,

h
, controls the bias-

variance trade-off [18], and must be carefully adjusted in order
to avoid over-fitting the training data. The representer theorem
[19] indicates that the solution to an optimisation problem of
this nature can be expressed in the form0 ���32��L� � +U �J,/.�� � B �1�<�c!5�<�_^ (3)

The advantage of the “kernel trick” is then apparent;
a linear model can be constructed in a high- or even
infinite-dimensional feature space, resulting in a very flexible
non-linear model, whilst involving only finite-dimensional
quantities, principally the vector of model parameters� � � � .K! � � !
^�^�^�! � + � , and the Gram matrix � ��
	 ��� � B ��� � ! � � �*) + ��
 �5,/. . The regularisation term can then be
re-written in terms of

�
and � as follows,4 � +U �-,/. � � :;�1��� � ��� l 4 l � � ��� � �T^

(4)

A. Bayesian Interpretation

Let ��� and ��� represent the contributions to the cost
function (2) due to the data misfit and regularisation terms
respectively,

� � � +U �-,a. b � 0 ���&�c2��;�_!c#%�c) ����� � � � jk ��� � � ^
Minimisation of the cost function (2) is then equivalent to
maximising the Bayesian posterior distribution over model
parameters, � ���! � � � � � �  � � � ���L�� � � � !
where the likelihood of the data with respect to

7 �c8-2��;�
is given

by � � �  �L� � j" � ���;� O_Q@RL� Y ��� )
and the prior distribution over model parameters by� ��� � � j" � ��� � O_Q@R;� Y h � � )I!
where

" � ���;� and
" � ���L� represent appropriate normalising

functions. For kernel learning methods, the prior distribution
over model parameters is then a zero-mean multi-variate
Gaussian distribution with covariance matrix �$# . ,� ���L� � j% � k'&)( h � +  �  O_Q@R+* Y jk h�� � �-,d^

(5)

B. Sparse Bayesian Kernel Ridge Regression

Kernel Ridge regression [5] implements a form of reg-
ularised non-linear least-squares regression, where the data
misfit term in the optimisation criterion (2) is given by

� � � jk +U �-,/. � #%� Y 0 �����c!��;��� � ^
For large scale applications, optimising the vector of coeffi-
cients of a fully dense kernel expansion (3) may not be com-
putationally feasible. Instead we may opt to approximate (3)
by a sparse expansion where only a fraction of the coefficients
assume non-zero values. Without loss of generality, we will for
the moment assume that the first

	
coefficients are retained,

and return to the issue of choosing a good set of coefficients
at a later stage. The output of the sparse kernel machine is
then given by .0 ���32��L� �0/U �-,a.�� � B ��� � ! �<�e^
The optimisation criterion to be minimised in training a sparse
kernel ridge regression model then becomes,` ���;� �21 k +U �J,/. � # � Y

.0 �1� � 2��L�3� � f hk /U�5,a.4� �� ^
The most probable vector of model parameters,

�6587
, i.e. those

minimising

` ��� �
or equivalently maximising the posterior

distribution, are given by the solution of a system of linear
equations, 9 1;:� � :� fih .�=< � � 1!:� ��> !

(6)

where

.
� � � B �1���5!5�)� �3� /��
 �5,/. is the symmetric sub-matrix of� formed by the first

	
columns of the first

	
rows, and:� � � B ���<�%! �)� �3� �-, / 
 �5, +�?
 �5,a. is the sub-matrix comprised of the

first
	

columns of � . The likelihood of the i.i.d. training
data with respect to the model parameters,

�
, is a Gaussian

distribution,� � �  � � � j" � � 1 � O�Q R S Y 1 k +U �J,/. � # � Y
.0 �1� � 2��L�3� � [

where
1

represents the inverse variance of the assumed additive
zero-mean Gaussian noise process, i.e.# � � 0 ��� � 2��;�ZfA@ � ! @ �)BDC ��E\! 1 # . �_^
The posterior distribution over the model parameters,

�
, is also

a Gaussian distribution, centred on the most probable vector
of coefficients,

��587
,� ���+ � � � j"GF O_Q@R!* Y ` ��� 587 � Y jk�H �I�KJ H �L,

where H � � � Y � 587
and

J
is the Hessian of

` ���L�
with

respect to
�

, evaluated at the most probable value,J �NM+M ` ��� �O �QPSR � 1!:� � :� f h .� ^ (7)



C. The Evidence Framework for
1

and
h

The evidence approximation of [2–4] assumes that the
posterior distribution for the hyper-parameters, � � h@! 1  � � , is
sharply peaked about their most probable values,

hO587
and1 587

, suggesting the following approximation to the posterior
distribution for

�
,� ���; � � � ��� � ���! h@! 1 ! � � � � h@! 1  � ��� h�� 1
� � ���+ h 587 ! 1 587 ! � �e^

Thus, rather than integrate out the regularisation parameter
entirely (e.g. [20]), we simply proceed with the analysis using
the regularisation parameter fixed at its most likely value. For
a discussion of the validity of this approach, see MacKay [21].
We seek therefore to maximise the posterior distribution,� � h@! 1  � � � � � �  h@! 1 � � � h@! 1 �� � � � ^
If the prior, � � h@! 1 � is relatively insensitive to the values of

h
and

1
, then maximising the posterior is approximately equiv-

alent to maximising the likelihood term, � � �  h\! 1 � , known as
the evidence for

h
and

1
. Assuming the the posterior for the

model parameters is Gaussian, the log-evidence is given by

���
	 � � �  h\! 1 � � 	 k ���
	 h f �k ���
	 1 Y �k ����	 � k'& �Y 1 � 587� Y h � 587� Y jk ����	  J  ^ (8)

Update formula for each of the hyper-parameters are normally
then obtained by setting the derivative of (8) with respect toh

equal to zero and solving for
h

and a similar procedure
then followed for

1
. Unfortunately, the form of the Hessian

(7) means that it is difficult to obtain simple expressions for
the required derivatives of

����	  J  
.

D. The “Trick”

The difficulty in obtaining derivatives of
���
	  J  

is due to the
non-spherical nature of the prior distribution (5). We therefore
transform the dual parameter space, so that the model is re-
parameterised in order for the prior to become spherical, i.e.
such that �I� � � �
� � � !
where

� � ��� .�! � � !
^�^
^_! � + ) is the vector of transformed pa-
rameters. The regularisation term is then equivalent to simple
weight-decay. Let � represent the upper triangular Cholesky
factor [22] of a symmetric positive-definite matrix � , such
that � � � � � . By inspection, the desired parameterisation
is then given by�P� � � ��� � � � # . � ^
The Bayesian analysis can then proceed using the evidence
framework developed by [2–4], without further modification.
The Hessian of

`
with respect to

�
can then be written asJ ��� fih��&!

where
� � 1 M+M � � is the Hessian of

1 � � with respect
to
�

. If the eigenvalues of
�

are � . ! � � !�^
^�^
! � / , then the
eigenvalues of

J
are

� � .3f�h �_!
� � � f�h �_!�^
^�^�! � � / f�h �
. The

derivative of
����	  J  

with respect to
h

(assuming that the
eigenvalues of

�
are independent of

h
) is then given by�� h ���
	  J  � �� h ���
	 S /��J,/. � � � fih � [ �0/U �J,/. j� � f h ^

Setting the derivative of the log-evidence with respect to
h

to
zero, we have thatk h � 587� � 	 Y /U �-,/. h

� �"fih � /U �J,/. � �� � f h ��� !
where

�
is the number of well determined parameters in

the model. This leads to a simple update formula for the
regularisation parameter:h������ � �k � 587� ^

(9)

Similarly at the maximum of the log-evidence (8) with respect
to
1
, k 1 � 587� � � Y /U �J,/. � �� �"fih � � Y �

giving the familiar update formula for the hyper-parameter
1
,1 ����� � � Y �k � 587� ^

(10)

The training procedure then alternates between updates of
the primary model parameters,

�
, via (6) and updates of

the hyper-parameters,
h

and
1
, according to equations (9-

10). In practise, rather than using the transformed parameters
only in computing the number of well-determined parameters,
the entire training procedure is most easily conducted in the
transformed parameters,

�
, and the original model parameters,�

, reclaimed afterwards. The values of kernel parameters can
then be optimised by maximising the log-evidence for model,� �

, ����	 � � �  � � � � h 587 � 587� Y 1 587 � 587� Y jk ����	  J  f 	 k ���
	 h 587 f �k ����	 1 587f jk ����	 * k� , f9jk ����	 * k� Y � , ! (11)

where in this case
� �

specifies the kernel function (see [2] or
[23] for further details).

E. Inducing Sparsity

The Gram matrix, � , for a radial basis function kernel is at
least in principle positive definite and of full rank, assuming
that

� � �� � � !"!$# !�% � � j ! k !�^
^�^e!c�K) [24]; however it is
possible for � to be numerically rank-deficient in which case
the Cholesky factor � becomes ill-conditioned. We therefore
use the incomplete Cholesky factorisation with symmetric
pivoting, due to [1], to construct the Cholesky factor &� ,



of

.
� , a numerically full-rank symmetric sub-matrix of � .

Again, without loss of generality, we assume that only the
first

	
columns of � can contribute to forming

.
� ; the

remaining columns of � are then linearly dependent, or close
to being linearly dependent, on columns j ! k !�^�^
^_! 	 , and
can be safely deleted prior to training without significantly
affecting model performance (c.f. [25]). The Cholesky factor
required to implement the re-parameterisation described in
section II-D is then provided as a bye-product of the process
used to identify redundant terms in the kernel expansion.

F. Alternative Approaches

The matrix � defining the required transformation is es-
sentially the square-root of � and is not generally unique.
Alternatively, we could use the principal square root of �
[26]. Note both methods are commonly used to obtain a
sample from an arbitrary multi-variate normal distribution
from a sample drawn from a normal distribution with a
unit covariance matrix. We adopt the incomplete Cholesky
factorisation method [1] for four reasons:
� Both the principal square root has a computational com-

plexity of
���������

operations. The incomplete Cholesky
factorisation terminates when the linearly independent
columns of � have been exhausted, as a result the
computational complexity is only

�����
	 � �
operations,

where
	

is the number of columns included in the
Cholesky factor.

� The incomplete Cholesky factorisation provides a simple
method of introducing sparsity.

� The Cholesky factor is derived from a numerically full-
rank sub-matrix of � and so is highly likely to be stable.

� As the Cholesky factor is triangular, its inverse can be
computed efficiently.

G. Sparse Bayesian Heteroscedastic Kernel Ridge Regression

Suppose we are given a dataset where the targets,
# �

, are
assumed to be realisations of some underlying function that
have been corrupted by an independent and identically dis-
tributed2 (i.i.d.) sample drawn from a Gaussian noise process
with a mean of zero and input dependent variance,#%� � � �1��� �Wf @*�5! @*� BAC ��E !����1��� �c�_^
The conditional probability density of target

# �
, given input

vector
� �

is given by� ��# �  � � � � j� k & ������� � O_Q@R+* Y � # � Y � �1� � ���M�k � � ����� � , ^
(12)

The negative log-likelihood (omitting constant terms) can then
be written as� � � +U �-,/. * ���
	 ���1� � �Zf � #%� Y � �1��� �3� �k � � �1��� � ,6^

(13)

2By identically distributed we mean that the conditional distribution is
identical for all samples, although the variance of the noise process is different
for samples collected from different regions of �

To model the data, we must jointly estimate the functions � �1�<�
and

�����I�
using a kernel model [27]. The conditional mean is

estimated by a linear model, � �1�<� � 4��;8*: � ���<� , constructed
in a fixed feature space, = � � : � >C�GA = � � . Space = �
is induced by a positive definite kernel, B � >/��D � A �

,
defining the inner product B � �1�3! ��HJ� � : � �1�<�&8K: � �1��HM� . The
superscript � is used to denote entities used to model the
conditional mean � �1�<� . The standard deviation is a strictly
positive quantity and so the logarithm of the standard deviation
is estimated by a second linear model,

���
	 ���1� � � � 4�� 8 : � ���<�
,

similarly constructed in a feature space = � defined by Mercer
kernel B � . A superscript

�
is used to identify entities used

to model the standard deviation,
�����I�

. The parameters of
the model (

4	�
, and

4	�
) are determined by minimising the

objective function` �14 � !c4 � � � +U �J,/. * ����	 �����<���/f � #%� Y � �1��� �3� �k � � ��� � � ,f jk h � l 4 � l � f jk h � l 4 � l � ^ (14)

Again the representer theorem means that these models can be
represented by kernel expansions. In this case, we approximate
the full kernel model using sparse expansions, such that

� �1�<� � /�
U �J,/.�� �� B � �1�3! � � �_!
and ���
	 ���1�<� � /
�U �J,/.)� �� B � ���3!5��� �e^
Again, the model is re-parameterised to facilitate a Bayesian
analysis under the evidence framework, such that�

�
� � � � � ����� �

�
� � � � � !

where � �� � � � � � � B � �����c! ��� �e) /�
��
 �5,/. and � �� � � �� � � � B � �1� � !5� � �*) /
��?
 �5,a. . In this case the posterior dis-
tribution over the model parameters,

4��
and

4��
, is only

approximated by a Gaussian centred on the most probable
values. Under this approximation, the log-evidence for the
hyper-parameters,

h��
and

h��
, is given by����	 � � �  h � !*h � � � 	��k ����	 h � f 	��k ���
	 h �Y �k ���
	 � k & � Y � 587�Y h � � 587� 
 Y jk ����	  J �  Y h � � 587� � Y jk ���
	  J �  ! (15)

where � � 
 ��� /�
�J,/. � �� , � � � ��� /���J,/. � �� and
J �

andJ �
represent the Hessian matrices of (14) with respect to� �

and
� �

respectively. Update formula for the regularisation
parameters can then be obtained as before,h �� ��� � � �k � � 
 ! � � � /

U �-,a. � ��� �� f h �



and h ������ � � �k � � � ! � � � /
�U �J,/. � ��� �� fih � !
where �

�
and �

�
represent the eigenvalues of the Hessian

matrices of ��� with respect to
� �

and
� �

respectively.
Good values for the kernel parameters can be obtained by
maximising the log-evidence for the model

� �
, given by an

expression analogous to (11).

III. RESULTS

In this section, we compare Bayesian, cross-validation based
and hybrid model selection strategies for conventional and het-
eroscedastic kernel ridge regression models of the Motorcycle
benchmark datasets. The Bayesian strategy takes an evidence-
based approach to optimisation of all regularisation, inverse
noise variance and kernel parameters. The cross-validation
strategy chooses good values for all of these parameters by
minimising a 10-fold cross-validation estimate of the negative
log-likelihood. The hybrid strategy optimises regularisation
and inverse noise variance parameters via the Bayesian ap-
proach and the kernel parameters via 10-fold cross-validation.
The Nelder-Mead simplex algorithm [28] was used for all
function minimisation problems. The Motorcycle benchmark
consists of a sequence of accelerometer readings through
time following a simulated motorcycle crash performed dur-
ing experiments to determine the efficacy of crash helmets
[29]. Figure 1 shows conventional and heteroscedastic kernel
ridge regression models resulting from Bayesian and cross-
validation based model selection strategies; both strategies
are seen to produce sensible models of the data with little
indication of over-fitting.

Table I shows leave-one-out cross-validation estimates of
the sum-of-squares error and negative log-likelihood given by
(13) for conventional and heteroscedastic kernel ridge regres-
sion models for each model selection strategy. The differences
between model selection strategies in terms of generalisation
seem relatively slight, none of the model selection strategies
clearly dominate any of the statistics considered.

TABLE I

LEAVE-ONE-OUT CROSS-VALIDATION ESTIMATES OF SUM-OF-SQUARES

ERROR AND NEGATIVE LOG-LIKELIHOOD FOR THE MOTORCYCLE

BENCHMARK DATASET [29].

MODEL SELECTION SSE ���
KRR CROSS-VALIDATION 70851 486.41
KRR BAYESIAN 72150 487.06
KRR HYBRID 70929 485.95
HKRR CROSS-VALIDATION 72100 439.70
HKRR BAYESIAN 71269 462.39
HKRR HYBRID 74513 453.58

Table II shows the number of kernel functions used to model
the conditional mean and conditional variance of the target
distribution and also the time taken for model selection. The

advantages of the Bayesian model selection strategy become
apparent; the Bayesian strategy is not only significantly faster
than cross-validation and hybrid strategies, but also results in
the most compact models with fewest parameters.

TABLE II

NUMBER OF BASIS FUNCTIONS USED TO MODEL THE CONDITIONAL

MEAN, ��� AND CONDITIONAL VARIANCE, ��� , AND MODEL SELECTION

TIME FOR THE MOTORCYCLE BENCHMARK DATASET [29].

MODEL SELECTION � � � � TIME

KRR CROSS-VALIDATION 27 — 26.24 S
KRR BAYESIAN 16 — 1.09 S
KRR HYBRID 20 — 5.61 S

HKRR CROSS-VALIDATION 25 32 176.92 S
HKRR BAYESIAN 18 6 12.58 S
HKRR HYBRID 15 14 154.11 S

IV. CONCLUSION

In this paper we have introduced a simple mathematical
device simplifying the construction of Bayesian treatments
of a family of sparse kernel learning methods. The use of
this technique was demonstrated by a Bayesian analysis of
sparse conventional and heteroscedastic kernel ridge regression
algorithms. The limited simulation results presented indicate
that Bayesian model selection strategies are competitive with
cross-validation based approaches, with reduced computa-
tional expense. It is likely that this method will be more widely
applicable, for non-linear regression with non-Gaussian noise
models, for example in parametric survival analysis [30] or in
modelling rainfall [31].
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Fig. 1. (a) Kernel ridge regression model of the Motorcycle benchmark dataset [29] with model selection based on 10-fold cross-validation, (b) kernel ridge
regression with Bayesian model selection, (c) heteroscedastic kernel ridge regression with 10-fold cross-validation based model selection and (d) heteroscedastic
kernel ridge regression with Bayesian model selection.
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