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Abstract

Mika et al. [3] introduce a non-linear formulation of
Fisher’s linear discriminant, based the now familiar “ker-
nel trick”, demonstrating state-of-the-art performance on a
wide range of real-world benchmark datasets. In this paper,
we show that the usual regularisation parameter can be ad-
justed so as to minimise the leave-one-out cross-validation
error with a computational complexity of onlyO(`2) opera-
tions, where ` is the number of training patterns, rather than
the O(`4) operations required for a na΅eve implementation
of the leave-one-out procedure. This procedure is then used
to form a component of an ef£cient heirarchical model se-
lection strategy where the regularisation parameter is opti-
mised within the inner loop while the kernel parameters are
optimised in the outer loop.

1. Introduction

Assume we are given training data X =
{x1,x2, . . . ,x`} = {X1,X2} ⊂ Rd, where
X1 = {x1

1,x
1
2, . . . ,x

1
`1
} is a set of patterns belong-

ing to class C1 and similarly X2 = {x2
1,x

2
2, . . . ,x

2
`2
} is a

set of patterns belonging to class C2; Fisher’s linear dis-
criminant (FLD) attempts to £nd a linear combination of
input variables, w · x, that maximises the average separa-
tion of the projections of points belonging to C1 and C2,
whilst minimising the within class variance of the pro-
jections of those points onto the discriminant vector. The
Fisher discriminant is given by the vector w maximis-
ing the Rayleigh quotient

J(w) =
wTSBw

wTSWw
, (1)

where SB = (m1−m2)(m1−m2)
T , is the between class

scatter matrix, mj is the mean of patterns belonging to Cj ,

mj =
1

`j

`j
∑

i=1

x
j
i ,

and SW is the within class scatter matrix

SW =
∑

i∈{1,2}

`i
∑

j=1

(xij −mi)(x
i
j −mi)

T .

The innovation introduced by Mika et al. [3] is to construct
Fisher’s linear discriminant in a £xed feature space F (φ :
X → F) induced by a positive de£nite Mercer kernel K :
X × X → R de£ning the inner product K(x,x ′) = φ(x) ·
φ(x′) (see e.g. Cristianini and Shawe-Taylor [2]). Let the
kernel matrices for the entire dataset,K, and for each class,
K1 and K2 be de£ned as follows:

K = [kij = K(xi,xj)]
`
i,j=1

and
Ki = [k

i
jk = K(xj ,x

i
k)]

j=`,k=`i

j,k=1 .

The theory of reproducing kernels indicates thatw can then
be written as an expansion of the form

w =
∑̀

i=1

αiφ(xi). (2)

The objective function (1) can also be written such that the
data x ∈ X appear only within inner products, giving

J(α) =
αTMα

αTNα
, (3)

where α = {αi}
`
i=1, M = (m1 − m2)(m1 − m2)

T ,
mi = Kiui, ui is a column vector containing `i elements
with a common value of `−1

i and

N =
∑

i∈{1,2}

Ki(I −Ui)K
T
i ,



where I is the identity matrix and U i is a matrix with
all elements equal to `−1

i . The coef£cients, α, of the ex-
pansion (2) are then given by the leading eigenvector of
N−1M . Note that N is likely to be singular, or at best
ill-conditioned, and so a regularised solution is obtained by
substituting Nµ = N + µI , where µ is a regularisation
constant. To complete the kernel Fisher discriminant classi-
£er, f(x) = w · φ(x) + b, the bias, b, is given by

b = −α
`1m1 + `2m2

`
.

Xu et al. [7] show that the parameters of the kernel Fisher
discriminant classi£er are also given by the solution of the
following system of linear equations:

[

KK + µI K1

(K1)T `

] [

α

b

]

=

[

K

1
T

]

y, (4)

where 1 is a column vector of ` ones and y is a column vec-
tor with elements yi = `/`j for j = 1 and yi = −`/`j for
j = 2 ∀i : xi ∈ Xj . This illustrates the similarities be-
tween the kernel Fisher discriminant and the least-squares
support vector machine (LS-SVM) [5]. The kernel Fisher
discriminant (KFD) classi£er has been shown experimen-
tally to demonstrate near state-of-the-art performance on a
range of arti£cial and real world benchmark datasets [3] and
so is worthy of consideration for small to medium scale ap-
plications. In this paper we present an ef£cient algorithm
for approximate cross-validation of kernel Fisher discrimi-
nant models, providing a practical criterion for model selec-
tion.

2. Method

In this section, we describe a training algorithm for the
kernel Fisher discriminant classi£er in which the system of
linear equations (4) is solved in canonical form, allowing
the regularisation parameters to be updated in onlyO(`) op-
erations. An ef£cient method for approximate leave-one-out
cross-validation is then presented, forming the basis of a cri-
terion for the optimisation of the vector of regularisation pa-
rameters µ with a complexity of only O(`2) operations per
iteration.

2.1. Canonical Form KFD Analysis

The system of linear equations (4) can be written more
concisely in the form

β =
[

ZTZ +R
]−1

ZTy, (5)

whereZ = [K 1] andR is a diagonal matrix with elements
given by the vector of regularisation parametersµ. LetV be

an orthogonal matrix, the columns of which are the eigen-
vectors ofZTZ, andΛ be a diagonal matrix containing the
corresponding eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λ` ≥ 0, such
that

ZTZ = V ΛV T , V V T = V TV = I.

The principal components of Z are then given by the
columns of U = ZV ; note that UTU = Λ. The system
of linear equations (5) can then be expressed in canonical
form [6] as

α = C−1UTy = [Λ+R]
−1
UTy, (6)

where α = V Tβ. The principal advantage of expressing
the system of linear equations (5) in this form is that the ma-
trixC is diagonal, and so can be inverted in linear time, i.e.
O(`) operations.

2.2. Updating the Regularisation Parameter

The canonical parameters of the kernel Fisher discrimi-
nant classi£er can be written as

α =
Λ

[Λ+R]
α̂.

where α̂ are the parameters of a KFD model trained with-
out regularisation, i.e. µ = 0. As Λ and [Λ +R] are both
diagonal matrices, we can write [6]

αi =
λi

λi + µi
α̂i, i = 0, 1, 2, . . . , `,

It should be noted that adopting the canonical form (6), the
parameters of the kernel Fisher discriminant model can be
updated following a change in the vector of with a compu-
tational complexity of only O(`) operations.

2.3. Fast Leave-One-Out Cross-Validation

At each step of the leave-one-out cross-validation proce-
dure, a kernel Fisher discriminant classi£er is constructed
excluding a single example from the training data. The vec-
tor of canonical model parameters, α(i) at the ith step, in
which pattern i is excluded, is then given by the solution of
a modi£ed system of linear equations,

α(i) =
[

R+UT
(i)U (i)

]−1

UT
(i)y

where U (i) is the sub-matrix formed by omitting the ith

row ofU . Note thatUT
(i)U (i) is in general no longer diago-

nal, and so the most computationally expensive step is again

the inversion of the matrix C(i) =
[

R+UT
(i)U (i)

]

, with



a complexity of O(`3) operations. Fortunately C(i) can be
written as a rank one modi£cation of C,

C(i) =
[

R(i) +U
TU − uiu

T
i

]

=
[

C − uiu
T
i

]

, (7)

where ui is the ith row of U . This allows C−1
(i) to be found

in onlyO(`2) operations, given thatC−1 is already known,
via the following matrix inversion formula : Given an in-
vertible matrixA and column vectors u and v, then assum-
ing vTA−1u 6= −1, we have that

(

A+ uvT
)−1

= A−1 −
A−1uvTA−1

1 + vTA−1u
.

The computational complexity of the matrix inversion at
each step is thus reduced from O(`3) to O(`2). The com-
putational complexity of the leave-one-out cross-validation
process is then only O(`3) operations, which is the same as
that of the basic training algorithm for the kernel Fisher dis-
criminant classi£er.

2.4. Model Selection Criterion

For model selection purposes, we are not principally
concerned with the values of the model parameters them-
selves, but only statistics such as the leave-one-out error rate

Eloo =
1

`

∑̀

i=1

{1−Ψ(sign(yi)
{

r(i)

}

i
+ 1)}, (8)

where Ψ is the Heaviside or unit step function,

Ψ(x) =

{

1 x ≥ 0
0 x < 0

.

and
{

r(i)

}

i
= yi − w(i) · φ(xi) − b(i) is the residual er-

ror for the ith training pattern during the ith iteration of the
leave-one-out cross-validation procedure. It can be shown
that [1]

{

r(i)

}

i
=

1

1− hii
ri.

where ri = yi −w · φ(xi) − b is the residual error for the
ith training pattern for a kernel Fisher discriminant classi-
£er trained on the entire dataset, andH = UC−1UT is the
hat matrix of which hii is the ith element of the leading di-
agonal [6]. In this case, C is diagonal and can be inverted
in linear time, and therefore

hii =
∑̀

j=1

u2
ijc

−1
jj =

∑̀

j=1

u2
ij

(λj + µj)
.

The leave-one-out error rate can thus be evalu-
ated in closed form without explicit inversion of

C(i) ∀i ∈ {1, 2, . . . , `}, with a computational com-
plexity of only O(`2) operations. To £nd the optimal reg-
ularisation parameters we will assume, as is normally the
case, a single regularisation parameter µ and through-
out the rest of this paper we choose an isotropic radial basis
kernel.

K(xi,xj) = exp

(

−
‖xi − xj‖

2

σ2

)

.

The Nelder-Mead simplex algorithm [4] is then used to
search for the values of µ∗ and σ∗ minimising the leave-
one-out error ( 8).

3. Results

The proposed approximate leave-one-out cross-
validation method is evaluated over a series of randomly
generated synthetic datasets. The data sets vary in size be-
tween 10 and 1000 patterns. Figure 2 shows a graph of
run-time as a function of the number of training pat-
terns for direct and fast leave-one-out cross-validations
and KFD training. The fast leave-one-out cross-validation
is considerably faster (more than an order of magni-
tude) than the direct leave-one-out cross-validation and it
is even faster than the training procedure itself (assum-
ing that leave-one-out cross-validation is peformed as a
bye-product of training a model on the full dataset). This
suggest that it is well suited to use as a model selec-
tion method, in terms of computational complexity, for
medium sized datasets.

In order to evaluate the generalisation performance of
models minimising the leave-one-out error, the proposed
model selection procedure was applied to 13 real-world
benchmark datasets used in previous studies (e.g. [3]). Each
benchmark consists of 100 random partitions of the data
for form test and training sets (20 in the case of image and
splice dataset). The results obtained are also compared with
those of Mika et al. [3] including kernel Fisher discrimi-
nant and other state of the art classi£cation algorithms. Ta-
ble 1 shows the outcome of a comparison of the proposed
optimally regularised kernel Fisher discriminant and other
classsi£cation models. The ORKFD outperforms the 10-
fold cross-validation estimate of the test error rate adopted
by Mika et al. (KFD) [3] on 8 of the 13 data sets(banana, di-
abetis, german, ringnorm, titanic, twonorm, waveform) and
performs worse on the remaining £ve and scores the low-
est error rate on 7 datasets against the other state-of-the art
algorithms including KFD.

4. Summary

In this paper we have shown that the regularisation pa-
rameter of a kernel Fisher discriminant (KFD) classi£er



Data set ORKFD KFD SVM AdaBoostQ AdaBoostL RBF
Banana 10.49±0.54 10.75±0.45 11.53±0.66 10.90±0.46 10.73±0.43 10.76±0.42
Breast cancer 26.41±4.91 24.77±4.63 26.04±4.74 25.91±4.61 26.79±6.08 27.64±4.71
Diabetis 23.19±1.92 23.21±1.63 23.53±1.73 25.39±2.20 24.11±1.90 24.29±1.88
German 23.61±1.93 23.71±2.20 23.61±2.07 25.25±2.14 24.79±2.22 24.71±2.38
Heart 16.19±3.37 16.14±3.39 15.95±3.26 17.17±3.44 17.49±3.53 17.55±3.25
Image 3.62±0.68 4.76±0.58 2.96±0.60 2.67±0.63 2.76±0.61 3.32±0.65
Ringnorm 1.47±0.11 1.49±0.12 1.66±0.12 1.86±0.22 2.24±0.46 1.70±0.21
Solar ¤are 34.39±1.73 33.16±1.72 32.43±1.82 36.22±1.80 34.74±2.00 34.37±1.95
Splice 10.92±0.73 10.52±0.64 10.88±0.66 10.11±0.52 10.22±1.59 9.95±0.78
thyroid 4.65±2.18 4.20±2.07 4.80±2.19 4.35±2.18 4.59±2.22 4.52±2.12
Titanic 22.39±1.03 23.25±2.05 22.42±1.02 22.71±1.05 23.98±4.38 23.26±1.34
Twonorm 2.54±0.32 2.61±0.15 2.96±0.23 2.97±0.26 3.17±0.43 2.85±0.28
Waveform 9.79 ±0.42 9.86±0.44 9.88±0.43 10.07±0.51 10.53±1.02 10.66±1.08
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Figure 1. Graph of run-time as a function
of the number of training patterns for the
KFD training algorithm, direct leave-one-out
cross-validation and the fast leave-one-out
cross-validation procedure.

can be selected so as to minimise the leave-one-out cross-
validation error rate, with computational complexity of only
O(`2) operations. Minimising the leave-one-out error rate
then becomes an attractive model selection strategy as the
scaling properties of the leave-one-out cross-validation pro-
cedure are better than those of the training procedure for
the full model. The generalisation properties of models min-
imising the leave-one-out cross-validation are shown to be
on average better than those for models minimising the
more conventional 10-fold cross-validation error rate, and
also superior to a range of other well-known pattern recog-
nition algorithms.
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