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Abstract

This paper applies a general algorithm for dynamically pruning weights from feed forward

networks to the problem of allophone speech synthesis. Work using higher order and sigma-pi

networks has indicated that many of the weights in the trained network are redundant. The

weight zero enhanced (WZE) algorithm has been developed which removes weights during

the learning process with the aim of improving generalisation, whilst having as small an e�ect

on the learning process, and adding as low a computational overhead as possible. In simple

conventional speech synthesis systems, pre-recorded allophones are simply concatenated to

form the required utterance. Unfortunately the boundaries between allophones are consider-

ably slurred (an e�ect known as coarticulation) and such a simplistic approach leads to very

unnatural sounding speech. This paper describes part of an on going project into the use of

neural networks for allophone synthesis with better modelling of coarticulation.

1 INTRODUCTION

In continuous speech the boundaries between allophones are not distinct but are considerably

blurred, an e�ect known as coarticulation [1], caused by the inertia of articulators such as the

lips and tongue. Coarticulation can also be caused by articulators positioning themselves in an-

ticipation of subsequent allophones during production of the current allophone. Coarticulation is

redundant in that it carries little of the semantic content of an utterance, however we subcon-

sciously expect to hear its e�ects in natural speech.
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This paper describes the training of neural networks for speech synthesis through generation

of LPC parameters corresponding to a sequence of allophones. Linear predictive coding (LPC) [2]

attempts to �nd the coe�cients ak of an all pole �lter, with transfer function H(z), such that

its spectral properties are optimally similar to that of a segment of sampled speech. Given a

suitable excitation signal, speech can be reconstructed from these coe�cients, which must be

updated roughly every 10ms to allow for the time varying nature of speech. For voiced speech the

excitation signal can be approximated by a train of impulses, and for unvoiced speech by random

noise.

1.1 Line Spectral Pair (LSP) representation

Unfortunately LPC coe�cients are not themselves suitable for training neural networks as they are

highly sensitive to error. Small changes in the predictor coe�cients can lead to large changes in the

spectral properties of the synthesis �lter, at worst leading to instability. The LPC coe�cients must

be transformed into an equivalent parameter set with more suitable properties. The PARCOR [2]

and log area ratio [3] parameter sets are widely used in low bit rate coding of speech and have
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also been used in training neural speech synthesizers. Line spectral pair (LSP) [4] representation

is an equivalent parameter set found to have excellent quantization and interpolation properties

for use in low bit rate coding of speech. These properties have also been found to be useful in

our research in training neural networks for speech synthesis [5]. Line spectral pair coding records

the frequency of the zeros of two polynomials P (z) and Q(z) which are related to the predictor

polynomial A(z) by the following equations:

P (z�1) = Ap(z
�1
)� z�(p+1)Ap(z)

Q(z�1) = Ap(z
�1
) + z�(p+1)Ap(z)

The zeros of P (z) and Q(z) lie on the unit circle in the z plane, this reduction in the search

space allows e�cient root �nding methods to be employed (the roots of A(z) can also form a

useful parameter set, however the generalised root-�nding process is computationally expensive).

For the synthesis �lter to be stable, the zeros of P (z) alternate around the unit circle with the

zeros of Q(z). The overall spectral sensitivity of LSP parameters is less than that of PARCOR

or log area ratio parameters, and also the spectral sensitivity of individual LSP parameters are

uniform whereas low order PARCOR parameters exhibit higher sensitivities.

1.2 Weight zero enhancement (WZE)

Heywood and Noakes [6]introduces an enhancement to the standard back-propagation (BP) learn-

ing rule, which removes redundant weights during the learning process by a zero-weight mechanism

without incurring signi�cant deviations from the standard back-propagation learning algorithm.

To achieve this, two extra learning parameters are introduced. One is a stability threshold which

is compared to the stability of each neuron in the network during the weight update cycle. When

an individual neuron's stability betters that of the threshold, then the weights feeding this neuron

can be considered for weight zeroing. The second user-speci�ed parameter de�nes a maximum

weight magnitude such that any weight below this magnitude satisfying the stability threshold is

set to zero.

By removing weights, sparsely connected networks are generated during the learning process.

Training using the Weight Zero Enhanced (WZE) algorithm continues until a given RMS error is

reached. At this point a �nal 
ush of redundant weights is performed, such that all the weights

with a magnitude above the user speci�ed maximum weight magnitude are extracted, so de�ning

the sparsely connected network. Training then continues using the standard BP procedure until

the �nal maximum output layer error is satis�ed, preferably using a higher learning rate and

momentum. In order to minimise disruption to neuron stability, caused by setting weights to

zero in large networks, a limit to the number weights which can be set to zero at any one time

is employed [6]. This paper continues the development of the WZE algorithm by applying the

algorithm to a large problem involving the forming of a continuous mapping rather than the

pattern classi�cation problems to which the algorithm has previously been applied.

1.3 Network decomposition

Large arti�cial neural networks with large training sets inevitably take many hours, even days to

train satisfactorily on current workstations. In order to take advantage of a number of workstations

which lie largely unused overnight, the network is decomposed into a number of sub-networks which

may be trained in parallel. Each subnet is responsible for generating a di�erent type of speech

sound. The use of one network per allophone has been found to lead to poor generalisation as

each network receives too few training patterns [5], and so one network is used for each of seven

phonetic classes.
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Figure 1: Schematic drawing of network architecture.

2 NETWORK ARCHITECTURE

A network architecture similar to that used in the NETalk [7] system is employed (see Figure 1).

The input layer forms a sliding window over the input stream of tokens representing allophones.

The input layer consists of three groups of neurons which represent the current allophone and the

previous and subsequent allophones to provide partial context. Each allophone is represented by a

arbitrary binary code. In addition one input neuron is used to indicate the duration of the current

allophone and an index neuron is used to indicate how much of the current allophone has already

been generated. In order to synthesize speech parameters for a complete allophone, the input layer

is set to the appropriate pattern for the central and context allophones and the required duration.

A ramp input is then applied to the index neuron. As the index increases, the outputs of the

network step out the parameters required to synthesize the allophone.

3 TRAINING

All ten sentences from one speaker in the TIMIT database [8] were analysed using tenth order LPC

analysis. Eight sentences were used in training and two sentences reserved for testing. All inputs

and outputs were normalised to values between �0:5. Each sub-network was trained to produce

allophones belonging to one of seven phonetic classes: a�ricates, fricatives, plosives, nasals, liquids

and glides, vowels, and miscellaneous. The networks were trained using the weight zero enhanced

back-propagation algorithm on a number of Sun Sparcstations using a simulator written in C.

4 RESULTS

The WZE algorithm is applied until the RMS error measure has reduced to 0.1 for all but the

A�ricate and Miscellaneous cases, where RMS errors of 0.15 and 0.05 are applied respectively.

Following this training continues using the standard BP algorithm until either an RMS error of

0.05 (0.01 in the case of the Miscellaneous case) or 500 iterations of the training set are completed.

At this point this test data is presented. The main aim of these experiments is to determine the
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extent, if any, of weight redundancy and resulting generalisation improvements. Simulation results

(Figures 2 and 3) indicate that weight redundancy is extensive throughout all the networks. In

the case of the more important phonetic classes of vowel, nasal and plosive, where the data set is

larger, useful improvements over the generalisation abilities previously attained using BP alone.

Figure 2 summarises RMS error on test data (i.e. generalisation ability) as a function of zero weight

threshold, and Figure 3 number of weights employed as a function of zero weight threshold. A

zero weight threshold of zero corresponds to the standard BP algorithm. The �gures indicate that

higher zero-weight thresholds result in either to many weights being set to zero or the location of

an optimal solution (nasal data class). As the same network size is used for totally di�erent data

complexities (23, 30, 10), optimum network complexities will occur at di�erent weight counts.

Consequently, when using the WZE algorithm it is important to perform simulations over a range

of zero-weight thresholds in order to locate the threshold returning best performance. A zero-

weight threshold of 0.1 typically returns a generalisation performance near that of the standard

BP algorithm, after this the zero-weight threshold returning the best generalisation performance

is a function of the data complexity. Hence, those data classes with a complex data structure

reach an optimum generalisation ability for a lower zero-weight threshold (plosive data class) than

the more simple data structures, which have a lower interconnect density, hence make use of the

higher zero-weight thresholds (nasal data class).

5 CONCLUSIONS

Given the limited training data available, the authors believe that useful performance increases

result from application of the WZE algorithm. These data sets of a more complete nature (nasal,

vowel, plosive) allow the WZE algorithm to return better generalisation abilities than available

from standard BP alone. Furthermore, substantial reductions in weight requirements are possible

without disturbing the network performance (a function of the WZE algorithms dynamic pruning

technique which integrates pruning with the BP process). However, further work addressing the

e�ects of:

� Changing the network architecture to a four layer structure.

� Incorporation of product terms.

� Application of an improved data set.
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Figure 2: Graph RMS error on test data as a function of zero-weight threshold.
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Figure 3: Graph of weight count as a function of zero-weight threshold.
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