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Abstract

This paper applies a general algorithm for dynamically pruning weights from feed forward
networks to the problem of allophone speech synthesis. Work using higher order and sigma-pi
networks has indicated that many of the weights in the trained network are redundant. The
weight zero enhanced (WZE) algorithm has been developed which removes weights during
the learning process with the aim of improving generalisation, whilst having as small an effect
on the learning process, and adding as low a computational overhead as possible. In simple
conventional speech synthesis systems, pre-recorded allophones are simply concatenated to
form the required utterance. Unfortunately the boundaries between allophones are consider-
ably slurred (an effect known as coarticulation) and such a simplistic approach leads to very
unnatural sounding speech. This paper describes part of an on going project into the use of
neural networks for allophone synthesis with better modelling of coarticulation.

1 INTRODUCTION

In continuous speech the boundaries between allophones are not distinct but are considerably
blurred, an effect known as coarticulation [1], caused by the inertia of articulators such as the
lips and tongue. Coarticulation can also be caused by articulators positioning themselves in an-
ticipation of subsequent allophones during production of the current allophone. Coarticulation is
redundant in that it carries little of the semantic content of an utterance, however we subcon-
sciously expect to hear its effects in natural speech.
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This paper describes the training of neural networks for speech synthesis through generation
of LPC parameters corresponding to a sequence of allophones. Linear predictive coding (LPC) [2]
attempts to find the coefficients a; of an all pole filter, with transfer function H(z), such that
its spectral properties are optimally similar to that of a segment of sampled speech. Given a
suitable excitation signal, speech can be reconstructed from these coefficients, which must be
updated roughly every 10ms to allow for the time varying nature of speech. For voiced speech the
excitation signal can be approximated by a train of impulses, and for unvoiced speech by random
noise.

1.1 Line Spectral Pair (LSP) representation

Unfortunately LPC coefficients are not themselves suitable for training neural networks as they are
highly sensitive to error. Small changes in the predictor coefficients can lead to large changes in the
spectral properties of the synthesis filter, at worst leading to instability. The LPC coefficients must
be transformed into an equivalent parameter set with more suitable properties. The PARCOR [2]
and log area ratio [3] parameter sets are widely used in low bit rate coding of speech and have



also been used in training neural speech synthesizers. Line spectral pair (LSP) [4] representation
is an equivalent parameter set found to have excellent quantization and interpolation properties
for use in low bit rate coding of speech. These properties have also been found to be useful in
our research in training neural networks for speech synthesis [5]. Line spectral pair coding records
the frequency of the zeros of two polynomials P(z) and (Q(z) which are related to the predictor
polynomial A(z) by the following equations:
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The zeros of P(z) and Q(z) lie on the unit circle in the z plane, this reduction in the search
space allows efficient root finding methods to be employed (the roots of A(z) can also form a
useful parameter set, however the generalised root-finding process is computationally expensive).
For the synthesis filter to be stable, the zeros of P(z) alternate around the unit circle with the
zeros of Q(z). The overall spectral sensitivity of LSP parameters is less than that of PARCOR
or log area ratio parameters, and also the spectral sensitivity of individual LSP parameters are
uniform whereas low order PARCOR parameters exhibit higher sensitivities.

1.2 Weight zero enhancement (WZE)

Heywood and Noakes [6]introduces an enhancement to the standard back-propagation (BP) learn-
ing rule, which removes redundant weights during the learning process by a zero-weight mechanism
without incurring significant deviations from the standard back-propagation learning algorithm.
To achieve this, two extra learning parameters are introduced. One is a stability threshold which
is compared to the stability of each neuron in the network during the weight update cycle. When
an individual neuron’s stability betters that of the threshold, then the weights feeding this neuron
can be considered for weight zeroing. The second user-specified parameter defines a maximum
weight magnitude such that any weight below this magnitude satisfying the stability threshold is
set to zero.

By removing weights, sparsely connected networks are generated during the learning process.
Training using the Weight Zero Enhanced (WZE) algorithm continues until a given RMS error is
reached. At this point a final flush of redundant weights is performed, such that all the weights
with a magnitude above the user specified maximum weight magnitude are extracted, so defining
the sparsely connected network. Training then continues using the standard BP procedure until
the final maximum output layer error is satisfied, preferably using a higher learning rate and
momentum. In order to minimise disruption to neuron stability, caused by setting weights to
zero in large networks, a limit to the number weights which can be set to zero at any one time
is employed [6]. This paper continues the development of the WZE algorithm by applying the
algorithm to a large problem involving the forming of a continuous mapping rather than the
pattern classification problems to which the algorithm has previously been applied.

1.3 Network decomposition

Large artificial neural networks with large training sets inevitably take many hours, even days to
train satisfactorily on current workstations. In order to take advantage of a number of workstations
which lie largely unused overnight, the network is decomposed into a number of sub-networks which
may be trained in parallel. Each subnet is responsible for generating a different type of speech
sound. The use of one network per allophone has been found to lead to poor generalisation as
each network receives too few training patterns [5], and so one network is used for each of seven
phonetic classes.
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Figure 1: Schematic drawing of network architecture.

2 NETWORK ARCHITECTURE

A network architecture similar to that used in the NETalk [7] system is employed (see Figure 1).
The input layer forms a sliding window over the input stream of tokens representing allophones.
The input layer consists of three groups of neurons which represent the current allophone and the
previous and subsequent allophones to provide partial context. Each allophone is represented by a
arbitrary binary code. In addition one input neuron is used to indicate the duration of the current
allophone and an index neuron is used to indicate how much of the current allophone has already
been generated. In order to synthesize speech parameters for a complete allophone, the input layer
is set to the appropriate pattern for the central and context allophones and the required duration.
A ramp input is then applied to the index neuron. As the index increases, the outputs of the
network step out the parameters required to synthesize the allophone.

3 TRAINING

All ten sentences from one speaker in the TIMIT database [8] were analysed using tenth order LPC
analysis. Eight sentences were used in training and two sentences reserved for testing. All inputs
and outputs were normalised to values between +0.5. Each sub-network was trained to produce
allophones belonging to one of seven phonetic classes: affricates, fricatives, plosives, nasals, liquids
and glides, vowels, and miscellaneous. The networks were trained using the weight zero enhanced
back-propagation algorithm on a number of Sun Sparcstations using a simulator written in C.

4 RESULTS

The WZE algorithm is applied until the RMS error measure has reduced to 0.1 for all but the
Affricate and Miscellaneous cases, where RMS errors of 0.15 and 0.05 are applied respectively.
Following this training continues using the standard BP algorithm until either an RMS error of
0.05 (0.01 in the case of the Miscellaneous case) or 500 iterations of the training set are completed.
At this point this test data is presented. The main aim of these experiments is to determine the



extent, if any, of weight redundancy and resulting generalisation improvements. Simulation results
(Figures 2 and 3) indicate that weight redundancy is extensive throughout all the networks. In
the case of the more important phonetic classes of vowel, nasal and plosive, where the data set is
larger, useful improvements over the generalisation abilities previously attained using BP alone.
Figure 2 summarises RMS error on test data (i.e. generalisation ability) as a function of zero weight
threshold, and Figure 3 number of weights employed as a function of zero weight threshold. A
zero weight threshold of zero corresponds to the standard BP algorithm. The figures indicate that
higher zero-weight thresholds result in either to many weights being set to zero or the location of
an optimal solution (nasal data class). As the same network size is used for totally different data
complexities (23, 30, 10), optimum network complexities will occur at different weight counts.
Consequently, when using the WZE algorithm it is important to perform simulations over a range
of zero-weight thresholds in order to locate the threshold returning best performance. A zero-
weight threshold of 0.1 typically returns a generalisation performance near that of the standard
BP algorithm, after this the zero-weight threshold returning the best generalisation performance
is a function of the data complexity. Hence, those data classes with a complex data structure
reach an optimum generalisation ability for a lower zero-weight threshold (plosive data class) than
the more simple data structures, which have a lower interconnect density, hence make use of the
higher zero-weight thresholds (nasal data class).

5 CONCLUSIONS

Given the limited training data available, the authors believe that useful performance increases
result from application of the WZE algorithm. These data sets of a more complete nature (nasal,
vowel, plosive) allow the WZE algorithm to return better generalisation abilities than available
from standard BP alone. Furthermore, substantial reductions in weight requirements are possible
without disturbing the network performance (a function of the WZE algorithms dynamic pruning
technique which integrates pruning with the BP process). However, further work addressing the
effects of:

e Changing the network architecture to a four layer structure.
e Incorporation of product terms.

e Application of an improved data set.

6 ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the United Kingdom Science and Engineering
Research Council (SERC).

References

[1] D. O’Shaughnessy. Speech Communication — Human and Machine. Addison Wesley, 1987.

[2] L. R. Rabiner and R. W. Schafer. Digital processing of speech signals. Prentice-Hall, Englewood
Cliffs, New Jersey, USA, 1978.

[3] R. Viswanathan and J. Makhoul. Quantization properties of transmission parameters in linear
predictive systems. IEEE Trans. on acoustics, speech and signal processing, ASSP-23(3):309—
321, 1975.

[4] N. Sugamura and F. Itakura. Speech analysis and synthesis methods developed at ECL in
NTT — from LPC to LSP. In Speech Communication, volume 5, pages 199-215, 1986.



[5] G. C. Cawley and P. D. Noakes. LSP speech synthesis using backpropagation networks. In in
press, ANN-93, Brighton, May 1993.

[6] M. I. Heywood and P. D. Noakes. Simple addition to back-propagation learning for dynamic
weight pruning, sparse network extraction and faster learning. In in press, IEEE ICNN, San
Fransisco, 1993.

[7] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce english text.
Complex Systems, 1:145-168, 1987.

[8] DARPA acoustic-phonetic continuous speech corpus (TIMIT).

0.21 \

I
liqud —
nasal — —
02 . plosive 1
N vowel —-—

0.19

0.18

0.17

0.16

RMS error on test data

0.15

0.14

0.13

0.12 ! ! ! ! ! ! ! ! !
005 0.1 015 0.2 025 03 035 04 045 05

o

Figure 2: Graph RMS error on test data as a function of zero-weight threshold.
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Figure 3: Graph of weight count as a function of zero-weight threshold.



