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Abstract.

Mika et al. [1] introduce a non-linear formulation of the Fisher discrimi-
nant based the well-known “kernel trick”, later shown to be equivalent to
the Least-Squares Support Vector Machine [2, 3]. In this paper, we show
that the cross-validation error can be computed very efficiently for this
class of kernel machine, specifically that leave-one-out cross-validation
can be performed with a computational complexity of only O(`3) oper-
ations (the same as that of the basic training algorithm), rather than
the O(`4) of a direct implementation. This makes leave-one-out cross-
validation a practical proposition for model selection in much larger scale
applications of KFD classifiers.

1 Introduction

Assume we are given training data X = {x1,x2, . . . ,x`} = {X1,X2} ⊂ Rd,
where X1 = {x1

1,x
1
2, . . . ,x

1
`1
} is a set of patterns belonging to class C1 and

similarly X2 = {x2
1,x

2
2, . . . ,x

2
`2
} is a set of patterns belonging to class C2;

Fisher’s linear discriminant (FLD) attempts to find a linear combination of
input variables, w ·x, that maximises the average separation of the projections
of points belonging to C1 and C2, whilst minimising the within class variance of
the projections of those points. The Fisher discriminant is given by the vector
w maximising

J(w) =
wTSBw

wTSWw
, (1)

where SB is the between class scatter matrix SB = (m1 −m2)(m1 −m2)
T ,

mj = `−1
j

∑`j

i=1 x
j
i and SW the within class scatter matrix

SW =
∑

i∈{1,2}

`i
∑

j=1

(xij −mi)(x
i
j −mi)

T .



The innovation introduced by Mika et al. [1] is to construct Fisher’s linear
discriminant in a fixed feature space F (φ : X → F) induced by a positive
definite Mercer kernel K : X × X → R defining the inner product K(x,x′) =
φ(x) ·φ(x′) (see e.g. Cristianini and Shawe-Taylor [4]). Let the kernel matrices
for the entire dataset, K, and for each class, K1 and K2 be defined as follows:

K = [kij = K(xi,xj)]
`
i,j=1 and Ki = [kijk = K(xj ,x

i
k)]

j=`,k=`i

j,k=1 .

The theory of reproducing kernels indicates that w can then be written as an
expansion of the form

w =
∑̀

i=1

αiφ(xi). (2)

The objective function (1) can also be written such that the data x ∈ X appear
only within inner products, giving

J(α) =
αTMα

αTNα
, (3)

where α = {αi}
`
i=1,M = (m1−m2)(m1−m2)

T ,mi =Kiui, ui is a column
vector containing `i elements with a common value of `−1

i and

N =
∑

i∈{1,2}

Ki(I −Ui)K
T
i ,

where I is the identity matrix and U i is a matrix with all elements equal to
`−1
i . The coefficients, α, of the expansion (2) are then given by the leading
eigenvector of N−1M . Note that N is likely to be singular, or at best ill-
conditioned, and so a regularised solution is obtained by substituting Nµ =
N + µI, where µ is a regularisation constant. To complete the kernel Fisher
discriminant classifier, f(x) = w · φ(x) + b, the bias, b, is given by

b = −α
`1M1 + `2M2

`
.

Xu et al. [3] show that the parameters of the kernel Fisher discriminant clas-
sifier are also given by the solution of the following system of linear equations:

[

KK + µI K1
(K1)T `

] [

α

b

]

=

[

K

1

]

y, (4)

where 1 is a column vector of ` ones and y is a column vector with elements
yi = `/`j ∀i : xi ∈ Xj . This illustrates the similarities between the kernel Fisher
discriminant and the least-squares support vector machine (LS-SVM) [2]. The
kernel Fisher discriminant (KFD) classifier has been shown experimentally to
demonstrate near state-of-the-art performance on a range of artificial and real
world benchmark datasets [1] and so is worthy of consideration for small to
medium scale applications. In this paper we present an efficient algorithm for
approximate cross-validation of kernel Fisher discriminant models, providing a
practical criterion for model selection.



2 Method

The system of linear equations (4) can be written more concisely in the form

[

α

b

]

=
[

R+ZTZ
]−1

ZTy,

where Z = [K 1] and R = diag([µ1 0]) (n.b. this is very similar to the set of
normal equations to be solved in multi-variate linear regression). At each step
of the leave-one-out cross-validation procedure, a kernel Fisher discriminant
classifier is constructed excluding a single training pattern from the data. The
vector of model parameters, {α(i), b(i)} at the i

th iteration is then given by the
solution of a modified system of linear equations,

[

α(i)

b(i)

]

=
[

R+ZT
(i)Z(i)

]−1

ZT
(i)y

where Z(i) is the sub-matrix formed by omitting the ith row of Z. Normally
the most computationally expensive step is the inversion of the matrix C (i) =
[

R+ZT
(i)Z(i)

]

, with a complexity of O(`3) operations. Fortunately C(i) can

be written as a rank one modification of a matrix C,

C(i) =
[

R(i) +Z
TZ − ziz

T
i

]

=
[

C − ziz
T
i

]

, (5)

where zi is the i
th row of Z. The following matrix inversion lemma then allows

C−1
(i) to be found in only O(`2) operations, given that C−1 is already known:

Lemma 1 (Bartlett Matrix Inversion Formula) Given an invertible ma-
trix A and column vectors u and v, then assuming 1− vTA−1u 6= 0,

(

A+ uvT
)−1

= A−1 −
A−1uvTA−1

1 + vTA−1u
. (6)

This is known as the Bartlett matrix inversion formula [5].

Applying the Bartlett formula to the matrix inversion problem given in (5), we
have that

C−1
(i) = [C − ziz

T
i ]
−1 = C +

C−1ziz
T
i C

−1

1− zTi C
−1zi

.

The computational complexity of the leave-one-out cross-validation process is
thus reduced to only O(`3) operations, which is the same as that of the basic
training algorithm for the kernel Fisher discriminant classifier. In the case of
S-fold cross-validation, `/S applications of the Bartlett correction formula (6)
are performed in each trial to “erase” one of S disjoint sets of `/S training
patterns from the kernel Fisher discriminant classifier trained on the entire
dataset, again resulting in a computational complexity of O(`3) operations.



2.1 A Further Refinement

For model selection purposes, we are not principally concerned with the values
of the model parameters themselves, but only statistics such as the leave-one-
out error rate

E =
1

`
card{i : yi(w(i) · φ(xi) + b(i)) ≤ 0},

or equivalently

E =
1

`
card{i : sign(yi){r(i)}i ≤ −1},

where
{

r(i)
}

i
= sign(yi) − w(i) · φ(xi) + b(i) is the residual error for the ith

training pattern during the ith iteration of the leave-one-out cross-validation
procedure. It can be shown that

{

r(i)
}

i
=

1

1− hii
ri.

where ri = sign(yi) − w · φ(xi) + b is the residual error for the ith training
pattern for a kernel Fisher discriminant classifier trained on the entire dataset,
H = ZC−1ZT is the hat matrix of which hii is the ith element of the lead-
ing diagonal. The leave-one-out error rate can thus be evaluated in closed
form without explicit inversion of C(i) ∀i ∈ {1, 2, . . . , `}, with a computational
complexity of only O(`3) operations.

3 Results

The proposed approximate leave-one-out cross-validation method is evaluated
over a series of randomly generated synthetic datasets. In each case, approxi-
mately one quarter of the data belong to class C1 and three-quarters to class C2.
The patterns comprising class C1 are drawn from a bivariate Normal distribu-
tion with zero mean and unit variance. The patterns forming class C2 form an
annulus; the radii of the data are drawn from a normal distribution with a mean
of 4 and unit variance, and the angles uniformly distributed. The datasets vary
in size between 10 and 500 patterns. Figure 1 shows a graph of run-time as
a function of the number of training patterns for direct and fast approximate
leave-one-out cross-validation methods. Clearly the fast approximate method
is considerably faster and exhibits significantly better scaling properties than
the direct implementation. Let the relative approximation error be defined as

e =
‖r̃ − r̂‖2

‖r̃‖2
,

where r̃ is a vector of leave-one-out residual errors computed via the direct
approach and r̂ is the corresponding vector of residual errors resulting from
the proposed approximation. Figure 2 shows a graph of the mean relative
approximation error, as a function of the number of training patterns. The
approximation error is small for datasets of more than ≈ 30 training patterns.
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Figure 1: Graph of run-time as a function of the number of training patterns
for leave-one-out cross-validation of kernel Fisher discriminant classifiers via
direct and fast approximate methods (mean of 20 trials).
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Figure 2: Graph of the mean relative approximation error as a function of the
number of training patterns for the proposed fast approximate leave-one-out
cross-validation method (mean of 20 trials).



4 Summary

In this paper we have generalised an existing algorithm for leave-one-out cross-
validation of multi-variate linear regression models (see e.g. [6]) to provide
an approximation to the leave-one-out error rate of kernel Fisher discriminant
classifiers. The proposed algorithm allows approximate leave-one-out cross-
validation of this class of model with a computational complexity of only O(`3)
operations, instead of the O(`4) of a direct approach. Furthermore, profiling
information reveals that, providing C−1 is cached, the time taken to estimate
the leave-one-out error rate is considerably less than the time taken to train the
KFD classifier. As a result leave-one-out cross-validation becomes a practical
model selection criterion in far larger scale applications of KFD models.
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