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Abstract

Most people reading this paper will be aware of the NETalk system of Sejnowski and Rosenberg [1],

in which a multi-layer perceptron was trained to select the correct allophone for combinations of

letters occurring in plain English text. Once suitable allophones have been selected, the problem

remains of how should the sounds corresponding to a sequence of allophones be produced? The

most straight forward approach is to store pre-recorded examples of each allophone and then

simply concatenate them to form the required utterance. Unfortunately the boundaries between

adjacent allophones in continuous speech are not distinct, an e�ect known as coarticulation, and

such a simplistic approach leads to very unnatural sounding speech. This paper presents some

initial �ndings of experiments to evaluate di�erent parametric forms of speech based on linear

predictive coding (LPC) for training neural networks. These experiments were performed as part

of a project to improve the subjective quality of speech synthesizers, through the use of neural

networks for allophone synthesis.

Introduction

The realisation of an allophone is context-sensitive due to the inertia of articulators such as the

lips, jaw and tongue. Articulators can only move at a �nite speed in recovering from the position

assumed during the previous allophone, causing a gradual transition from one allophone to the

next. Coarticulation can also be caused by low level neural processes within the brain, where

articulators are also able to position themselves in anticipation of the subsequent allophones.

These movements are redundant in that they convey little of the semantic content of the utterance,

however we sub-consciously expect to hear e�ects of these movements in natural speech.

The most simple speech synthesis systems do not attempt to model coarticulation at all, but

simply concatenate pre-recorded allophones. A more sophisticated approach concatenates di-

phones, each consisting of the adjacent halves of two allophones. Diphones capture the immediate

e�ects of coarticulation and abut during the relatively steady state conditions during the cen-

tral part of each allophone. However this is at the expense of increased storage, as about 1200

diphones are required for the allowable permutations of around 60 allophones. If a parametric

description of speech is used, such as formant data, which records the frequency and amplitudes

of the spectral peaks known as formants, templates may be used to interpolate the value of each

parameter between target values set for each allophone. The rate at which each parameter changes

is determined according to the rank of each allophone, which reects the degree to which it a�ects

others. This allows more natural sounding speech to be produced, but at the expense of increased

complexity, and requires manual analysis of human speech to determine targets and rankings for

each allophone.

Our research has been concerned with investigating the use of neural networks for allophone

synthesis based on formant data [2, 3]. Unfortunately formant analysis of continuous speech

is a complex and computationally expensive procedure, making it di�cult to obtain the large
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amounts of training data needed. This paper presents results of initial experiments to the evaluate

di�erent coding techniques based on linear predictive coding, which are less complex and less

computationally expensive.

Linear Predictive Coding (LPC) [4] is a technique used to �nd the coe�cients ak of an all

pole �lter, with transfer function H(z), such that its spectral properties are similar to that of a

segment of sampled speech. Given a suitable excitation signal, speech can be reconstructed from

these coe�cients, which are updated every 10ms to allow for the time-varying nature of speech.

For voiced speech the excitation signal can be approximated by a periodic train of impulses, and

for unvoiced speech by random noise.

H(z) =
1

1 + a1z
�1

+ a2z
�2

+ � � �+ anz
�n

In this paper, neural networks trained using three coding schemes based on linear predictive

coding are compared, PARCOR [4, 5], log area ratio [4] and line spectral pair (LSP) [5]. Table 1

summarises some of the relative merits of each of method.

Table 1: A comparison of the properties of PARCOR, log area ratio and LSP coding schemes

Property PARCOR Log Area Ratio LSP

Inter-parameter spectral Lower order coe�cients Lower order coe�cients Uniform

sensitivity more sensitive more sensitive

Individual parameter Non-Uniform Uniform Uniform

sensitivity

Overall spectral sensitivity Good Good Very Good

Interpolation properties Poor Poor Good

Network architecture

An architecture similar to that employed in the NETalk system [1] was used, the input layer form-

ing a sliding window over the input stream of allophones (see Figure 1). The input layer consists

of three groups of neurons corresponding to the current and right and left context allophones.

Each allophone is represented by a vector of phonetic features such as the broad phonetic class

and place of articulation. In addition one input neuron is used to indicate the duration of the

current allophone and an index neuron is used to indicate how much of the current allophone

has already been generated. In order to synthesize speech parameters for a complete allophone,

the input layer is set to the appropriate pattern for the central and context allophones and the

required duration. A ramp input is then applied to the index neuron. As the index increases,

the outputs of the network step out the parameters required to synthesize the allophone. All ten

sentences from one speaker in the TIMIT database [6] were then analysed using tenth order LPC

analysis to generate PARCOR, log area ratio and LSP training data. The network was trained

using the backpropagation algorithm simulator written in C running on a Sun Sparcstation.

Results

The results obtained are displayed in Figures 2 and 3 which show graphs of RMS error and spectral

distortion against cycles trained for each coding scheme. The results given here were obtained

using a hidden layer of 50 neurons, however similar results are obtained using di�erent hidden layer

sizes. The log area ratio is a transformation of the PARCOR parameter set designed to atten

the spectral sensitivity of individual parameters, and was expected to produce marginally better
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results for this reason. This proved to be the case, the improvement was especially noticeable

during voiced sounds where PARCOR coe�cients tend to approach �1 where the coe�cients

spectral sensitivity is at its greatest. LSP coding was expected to out-perform the other coding

schemes. Firstly the overall spectral sensitivity of LSP parameters is slightly lower, secondly

LSP coe�cients exhibit better interpolation properties and lastly because each LSP coe�cient

has roughly the same spectral sensitivity. The spectral sensitivity of lower order PARCOR and

log area ratio coe�cients are higher, and so some method is required to concentrate training on

reducing the error in the low order coe�cients. The networks trained using LSP data seemed to

train faster than those trained on PARCOR and log area ratio data, and the sentences learned

with less spectral distortion. Speech generated using the network generated using LSP data was

also judged to be subjectively better.

Conclusions

We have shown that the use of LSP parameters in training neural networks for speech synthesis

results in faster training and higher objective and subjective speech quality than is obtained using

PARCOR or log area ratio parameters. Work is currently underway to produce a complete neural

network allophone speech synthesizer using line spectral pair representation.
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Figure 1: Schematic drawing of network architecture
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Figure 2: Graph of RMS error against cycles trained
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Cycles trained
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Figure 3: Graph of spectral distortion against cycles trained
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