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Abstract

Mika et al. [1] apply the “kernel trick” to obtain a non-linear variant of Fisher’s

linear discriminant analysis method, demonstrating state-of-the-art performance on

a range of benchmark datasets. We show that leave-one-out cross-validation of ker-

nel Fisher discriminant classifiers can be implemented with a computational com-

plexity of only O(`3) operations rather than the O(`4) of a näıve implementation,

where ` is the number of training patterns. Leave-one-out cross-validation then

becomes an attractive means of model selection in large-scale applications of ker-

nel Fisher discriminant analysis, being significantly faster than conventional k-fold

cross-validation procedures commonly used.
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1 Introduction

The now familiar “kernel trick” has been used to derive non-linear variants of

many linear methods borrowed from classical statistics (e.g. [2, 3]), including

ridge-regression [4], principal component analysis [5] and canonical correlation

analysis [6] as well as more recent developments such as the maximal margin

classifier [7] (giving rise to the support vector machine [8]). These methods

have come to be known collectively as “kernel machines” and have attracted

considerable interest in the machine learning research community due to a

combination of conceptual elegance, mathematical tractability and state-of-

the-art performance on real world as well as benchmark problems. One such

method, the kernel Fisher discriminant (KFD) classifier [1], implements the

well-known Fisher linear discriminant [9] in a feature space induced by a Mer-

cer kernel [10], giving rise to a non-linear pattern recognition method demon-

strating an impressive level of performance on a range of benchmark datasets.

An important advantage of many kernel methods, including the kernel Fisher

discriminant, is that the optimal model parameters are given by the solution

of a convex optimisation problem with a single, global optimum. However,

optimal generalisation still depends on the selection of an appropriate kernel

function and the values of regularisation [11] and kernel parameters, an activ-

ity known as model selection. For kernel Fisher discriminant networks this is

most frequently performed by a lengthy optimisation of a simple k-fold cross-

validation estimate of an appropriate performance statistic. In this paper, we

set out a fast implementation of the leave-one-out cross-validation procedure,

providing a more efficient means of model selection for kernel Fisher discrim-

inant classifiers than the conventional k-fold cross-validation approach and
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evaluate its performance on a range of standard benchmark machine learning

problems.

The remainder of this paper is structured as follows: Section 2 provides a

summary of the strengths and limitations of leave-one-out cross-validation for

the purposes of model selection. Section 3 gives a full description of kernel

Fisher discriminant analysis, establishing the notation used throughout. An

efficient implementation of the leave-one-out cross-validation procedure for

kernel Fisher discriminant networks is given in Section 4. A comparison of

model selection procedures based on k-fold and leave-one-out cross-validation

schemes, over a range of standard benchmark learning problems, is then pre-

sented in Section 5. Finally the works in summarised in Section 6

2 Strengths and Limitations of Leave-One-Out Cross-Validation

Cross-validation [12] is often used to estimate the generalisation ability of a

statistical classifier (i.e. the performance on previously unseen data). Under

cross-validation, the available data are divided into k disjoint sets; k models are

then trained, each on a different combination of k − 1 partitions and tested

on the remaining partition. The k-fold cross-validation estimate of a given

performance statistic is then simply the mean of that statistic evaluated for

each of the k models over the corresponding test partitions of the data. Cross-

validation thus makes good use of the available data as each pattern used is

used both as training and test data. Cross-validation is therefore especially

useful where the amount of available data is insufficient to form the usual

training, validation and test partitions required for split-sample training, each

of which adequately represents the true distribution of patterns belonging to
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each class. The most extreme form of cross-validation, where k is equal to the

number of training patterns is known as leave-one-out cross-validation, and

has been widely studied due to its mathematical simplicity.

A property of the leave-one-out cross-validation estimator, often cited as being

highly attractive for the purposes of model selection (e.g. [13, 14]), is that it

provides an almost unbiased estimate of the generalisation ability of a classi-

fier:

Lemma 1 (Bias of leave-one-out cross-validation [15, 16]) Leave-one-

out cross-validation gives an almost unbiased estimate of the probability of test

error, i.e.

E
{

p`−1
error

}

= E

{

L(x1, y1,x2, y2, . . . ,x`, y`)

`

}

, (1)

where p`−1
error is the probability of test error for a classifier trained on a sample

of size `−1 and L(x1, y1,x2, y2, . . . ,x`, y`) measures the number of leave-one-

out errors for a classifier trained on a set of input-target pairs, {(xi, yi)}
`
i=1,

of size `. The leave-one-out estimator is almost unbiased in the sense that the

expectations are taken over samples of size ` − 1 on the left hand side of (1)

and of size ` on the right.

However, a model selection criterion need not give an unbiased estimate of

the generalisation performance. For example, adding a fixed constant to the

leave-one-out estimator would not alter the outcome of the model selection

procedure, but would no longer provide an unbiased estimate of the test error.

The principal requirement of a practical model selection criterion is that it

should be strongly correlated with the true generalisation error, such that the

minimum of the selection criterion reliably coincides with the minimum of the

true generalisation error.

4



Empirical studies have shown that in some cases model selection based on k-

fold cross-validation out performs selection procedures based on the leave-one-

out estimator as the latter is known to exhibit a comparatively high variance.

For large datasets, however, it could be argued that the variances of k-fold

and leave-one-out estimators are likely to be similar:

Lemma 2 (Variance of k-fold cross-validation [17]) Assuming the train-

ing algorithm for a classifier system is stable with regard to the perturbation of

the training data introduced during the cross-validation procedure (i.e. the per-

turbation of the training data does not change the decision rule obtained), the

variance of the k-fold estimate of the accuracy of the inducer is independent

of k.

A straight-forward corollary of lemma 2 is that provided the dataset is suffi-

ciently large such that the inducer is stable, the variance of k-fold and leave-

one-out cross-validation estimates coincide. Most kernel machines (including

kernel Fisher discriminant analysis) are trained by minimising a regularised

loss functional, comprised of a sum of independent terms representing the loss

for each training pattern. It seems reasonable to suggest then, that such mod-

els will become stable for sufficiently large datasets, at least in the case of

the leave-one-out estimator, as the effect of removing a single term from the

loss functional becomes diminishingly small as the size of the training data

becomes large.

Leave-one-out cross-validation is normally restricted to applications where the

amount of training data available is severely limited, such that even a small

perturbation of the training data is likely to result in a substantial change in

the fitted model. In this case, it makes good sense to adopt a leave-one-out
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cross-validation strategy as it minimises the perturbation to the data in each

trial. Leave-one-out cross-validation is rarely adopted in large scale applica-

tions simply because it is computationally expensive. The training algorithms

for kernel machines, including that for the kernel Fisher discriminant, typ-

ically have a computational complexity of O(`3), where ` is the number of

training patterns. In this case, the leave-one-out cross-validation process has

a computational complexity of O(`4), which quickly becomes impractical as

the number of training patterns increases. Note however that minimising an

upper bound on the leave-one-out error has proved an effective means of model

selection for support vector machines (e.g. [13, 14]).

Since there exist theoretical and experimental justification both for and against

the use of leave-one-out cross-validation in model selection, we provide an

experimental comparison of leave-one-out and k-fold cross-validation in this

study. We further demonstrate that, in the case of kernel Fisher discriminant

models, the leave-one-out cross-validation procedure can be implemented with

a computational complexity of only O(`3) operations, the same as that of the

basic training algorithm, and by extension of the k-fold cross-validation pro-

cedure. Experiments show that the proposed leave-one-out cross-validation

process is actually faster than k-fold cross-validation (for any value of k),

overcoming the prohibition against leave-one-out cross-validation in large scale

applications.

3 Kernel Fisher Discriminant Analysis

Assume we are given training data X = {x1,x2, . . . ,x`} = {X1,X2} ⊂ R
d,

where X1 = {x1
1,x

1
2, . . . ,x

1
`1
} is a set of patterns belonging to class C1 and
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similarly X2 = {x2
1,x

2
2, . . . ,x

2
`2
} is a set of patterns belonging to class C2;

Fisher’s linear discriminant (FLD) attempts to find a linear combination of

input variables, w ·x, that maximises the average separation of the projections

of points belonging to C1 and C2, whilst minimising the within class variance of

the projections of those points. The Fisher discriminant is given by the vector

w maximising

J(w) =
wTSBw

wTSWw
, (2)

where SB is the between class scatter matrix SB = (m1 −m2)(m1 −m2)
T ,

mj = `−1
j

∑`j
i=1 x

j
i and SW the within class scatter matrix

SW =
∑

i∈{1,2}

`i
∑

j=1

(xij −mi)(x
i
j −mi)

T .

The innovation introduced by Mika et al. [1] is to construct Fisher’s linear

discriminant in a fixed feature space F (φ : X → F) induced by a positive

definite Mercer kernel K : X ×X → R defining the inner product K(x,x′) =

φ(x)·φ(x′) (see e.g. Cristianini and Shawe-Taylor [2]). Let the kernel matrices

for the entire dataset,K, and for each class,K1 andK2 be defined as follows:

K = [kij = K(xi,xj)]
`
i,j=1 and Ki = [kijk = K(xj,x

i
k)]

j=`,k=`i
j,k=1 .

The theory of reproducing kernels [18, 19] indicates thatw can then be written

as an expansion of the form

w =
∑̀

i=1

αiφ(xi). (3)

The objective function (2) can also be written such that the data x ∈ X

appear only within inner products, giving

J(α) =
αTMα

αTNα
, (4)
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where α = {αi}
`
i=1,M = (m1−m2)(m1−m2)

T ,mi =Kiui, ui is a column

vector containing `i elements with a common value of `−1
i and

N =
∑

i∈{1,2}

Ki(I −Ui)K
T
i ,

where I is the identity matrix and U i is a matrix with all elements equal to

`−1
i . The coefficients, α, of the expansion (3) are then given by the leading

eigenvector of N−1M . Note that N is likely to be singular, or at best ill-

conditioned, and so a regularised solution is obtained by substituting N µ =

N + µI, where µ is a regularisation constant. To complete the kernel Fisher

discriminant classifier, f(x) = w · φ(x) + b, the bias, b, is given by

b = −α
`1M 1 + `2M 2

`
.

Xu et al. [20] show that the parameters of the kernel Fisher discriminant clas-

sifier are also given by the solution of the following system of linear equations:

















KK + µI K1

(K1)T `

































α

b

















=

















K

1

















y, (5)

where 1 is a column vector of ` ones and y is a column vector with elements

yi = `/`j ∀i : xi ∈ Xj. This illustrates the similarities between the kernel

Fisher discriminant and the least-squares support vector machine (LS-SVM)

[21]. The kernel Fisher discriminant (KFD) classifier has been shown experi-

mentally to demonstrate near state-of-the-art performance on a range of arti-

ficial and real world benchmark datasets [1] and so is worthy of consideration

for small to medium scale applications.
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4 Efficient Leave-One-Out Cross-Validation

The system of linear equations (5) can be written more concisely in the form

p =
[

R+ZTZ
]−1

ZTy, (6)

where Z = [K 1], R = diag([µ1 0]) and p = (α, b) (n.b. this is very similar to

the set of normal equations to be solved in multi-variate linear regression [22]).

At each step of the leave-one-out cross-validation procedure, a kernel Fisher

discriminant classifier is constructed excluding a single training pattern from

the data. The vector of model parameters, p(i) = (α(i), b(i)) at the i
th iteration

is then given by the solution of a modified system of linear equations,

p(i) =
[

R+ZT
(i)Z(i)

]−1
ZT

(i)y,

where Z(i) is the sub-matrix formed by omitting the ith row of Z. Normally

the most computationally expensive step is the inversion of the matrix C (i) =
[

R+ZT
(i)Z(i)

]

, with a complexity of O(`3) operations. Fortunately C(i) can

be written as a rank one modification of a matrix C,

C(i) =
[

R(i) +Z
TZ − ziz

T
i

]

=
[

C − ziz
T
i

]

, (7)

where zi is the i
th row of Z. The following matrix inversion lemma then allows

C−1
(i) to be found in only O(`2) operations, given that C−1 is already known:

Lemma 3 (Matrix Inversion Formula [23–28]) Given an invertible ma-

trix A and column vectors u and v, then assuming 1− vTA−1u 6= 0,

(

A+ uvT
)−1

= A−1 −
A−1uvTA−1

1 + vTA−1u
. (8)

This is known as the Bartlett-Sherman-Woodbury-Morrison formula.
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Applying the Bartlett-Sherman-Woodbury-Morrison formula to the matrix

inversion problem given in (7), we have that

C−1
(i) = [C − ziz

T
i ]
−1 = C−1 +

C−1ziz
T
i C

−1

1− zTi C
−1zi

.

The computational complexity of the leave-one-out cross-validation process is

thus reduced to only O(`3) operations, as l matrix inversions are required, at a

computational complexity of O(`2). This is the same as that of the basic train-

ing algorithm for the kernel Fisher discriminant classifier, and by extension

the k-fold cross-validation procedure for these models.

4.1 A Practical Model Selection Criterion

For model selection purposes, we are not principally concerned with the values

of the model parameters themselves, but only statistics such as the leave-one-

out error rate

E =
1

`
card{i : yi(w(i) · φ(xi) + b(i)) ≤ 0}, (9)

or equivalently

E =
1

`
card{i : sign(yi){r(i)}i ≤ −1},

where
{

r(i)

}

i
= yi −w(i) · φ(xi) + b(i) is the residual error for the ith training

pattern during the ith iteration of the leave-one-out cross-validation procedure.

Alternatively, since the kernel Fisher discriminant minimises a regularised sum

of squares loss functional [20], the natural model selection criterion would

be a leave-one-out estimate of the sum of squares error, i.e. Allen’s PRESS

(predicted residual sum of squares) statistic [29],

PRESS =
∑̀

i=1

{

r(i)

}2

i
, (10)
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Fortunately it is possible to compute these residuals without explicitly eval-

uating the model parameters in each trial. It is relatively straight-forward to

show that

{

r(i)

}

i
=

ri
1− hii

,

(see appendix A) where ri = yi − f(xi) is the residual for the ith training

pattern for a kernel Fisher discriminant model trained on the entire dataset

andH = ZC−1ZT is the hat matrix [22] of which hii is the i
th element of the

leading diagonal [30]. Allen’s PRESS statistic can therefore be evaluated in

closed form without explicit inversion of C (i) ∀i ∈ {1, 2, . . . , `}, again with a

computational complexity of only O(`3). Note that this result is well-known in

the field of linear least-squares regression (e.g. [30]); again the “kernel trick”

enables its use in a non-linear context.

5 Results

In this section we present an experimental comparison of efficient leave-one-

out and conventional k-fold cross-validation procedures for model selection in

training kernel Fisher discriminant classifiers, in terms of both computational

complexity (efficiency) and in terms of the generalisation of the resulting ker-

nel Fisher discriminant networks. The relative efficiency of the proposed ap-

proach is determined using a relatively large-scale synthetic learning task. A

set of thirteen real-world and synthetic benchmark datasets from the UCI

repository [31] is used to evaluate the generalisation properties resulting from

model selection schemes based on leave-one-out and k-fold cross-validation.
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An isotropic Gaussian kernel,

K(x,x′) = exp

{

−
‖x− x′‖2

2σ2

}

,

is used in all experiments.

5.1 Computational Complexity

The proposed approximate leave-one-out cross-validation method is evaluated

over a series of randomly generated synthetic datasets, as shown in Figure 1.

In each case, approximately one quarter of the data belong to class C1 and

three-quarters to class C2. The patterns comprising class C1 are drawn from a

bivariate Normal distribution with zero mean and unit variance. The patterns

forming class C2 form an annulus; the radii of the data are drawn from a normal

distribution with a mean of 5 and unit variance, and the angles uniformly

distributed. The datasets vary in size between 10 and 1000 patterns. Figure 2

shows a graph of run-time as a function of the number of training patterns

for fast and näıve leave-one-out and 10-fold cross-validation estimates of the

test sum of squares error statistic. Clearly the fast leave-one-out method is

considerably faster and exhibits significantly better scaling properties than the

näıve implementation of the leave-one-out estimator. For large datasets, the

run-time for the fast leave-one-out estimator is also approximately seven times

faster than 10-fold cross-validation. Inspection of the gradients of the curves

displayed on The log-log axes show that the computational complexity of k-

fold and the proposed leave-one-out estimator is, as expected, approximately

O(`3).
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5.2 Generalisation

In order to verify that the improved efficiency of the leave-one-out cross-

validation procedure is not obtained at the expense of generalisation, the

proposed model selection procedure is evaluated on a suite of 13 real world

and synthetic benchmark problems from the UCI repository [31]. We adopt

the experimental procedure used in the study by Rätsch et al. [32], where

100 different random training and test splits are defined (20 in the case of

the large-scale image and splice datasets). Model selection is performed on

the first five training splits, taking the median of the estimated values for the

optimal regularisation (γ) and kernel (σ) parameters. Generalisation is then

measured by the mean error rate over the 100 test splits (20 for image and

splice datasets). The benchmarks, including test and training splits are avail-

able from http://ida.first.gmd.de/∼raetsch/data/benchmarks.htm.

Model selection via minimisation of leave-one-out and 10-fold cross-validation

estimates of the sum of squares error (10) are compared directly, to determine

whether the higher variance of the leave-one-out estimator results in a consis-

tent reduction in generalisation ability. The results obtained are also compared

with those from Mika et al. [33], including kernel Fisher discriminant mod-

els where the model selection procedure minimised a 10-fold cross-validation

estimate of the test error rate (9). This supports a comparison of continuous

and discrete model selection criteria as well as a comparison with a range of

other state-of-the art classification algorithms such as AdaBoost [34] and the

support vector machine [16].

Table 1 shows the outcome of a comparison of model selection procedures for
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kernel Fisher discriminant models and a range of state-of-the-art statistical

pattern recognition algorithms. The KFD with a leave-one-out model selection

procedure (KFD-LOO) outperforms the KFD with 10-fold cross-validation

(sum of squares) model selection (KFD-XVAL) on two of the thirteen datasets

(german and twonorm), demonstrates similar performance on nine, and per-

forms worse on two (breast-cancer and splice). This clearly demonstrates that

for a sum of squares selection criteria, the leave-one-out estimator does not

significantly degrade performance, despite being known to exhibit a higher

variance. The proposed leave-one-out model selection procedure outperforms

the 10-fold cross-validation estimate of the test error rate adopted by Mika et

al. (KFD) on seven of the thirteen datasets (banana, diabetis, german, heart,

ringnorm, titanic and waveform) and performs worse on the remaining six.

This demonstrates that neither the continuous sum of squares or the discrete

error rate statistics result in consistently superior generalisation. The leave-

one-out model selection procedure should then be considered superior on the

grounds of computational complexity. The superior performance of the leave-

one-out KFD method, against the range of state-of-the-art algorithms, should

also be noted, providing the lowest error rate on seven of the thirteen datasets

and the second best on a further one.

6 Summary

In this paper we have presented a generalisation of an existing algorithm for

leave-one-out cross-validation of multi-variate linear regression models (see

e.g. [22]) to provide an estimate of the leave-one-out error of kernel Fisher dis-

criminant classifiers. The proposed algorithm implements leave-one-out cross-
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validation of this class of kernel machine at a computational complexity of

only O(`3) operations, instead of the O(`4) of a näıve approach. Furthermore,

profiling information reveals that, providing C−1 is cached during training,

the time taken to estimate the leave-one-out error rate is considerably less

than the time taken to train the KFD classifier on the entire dataset. As a

result leave-one-out cross-validation becomes an attractive model selection cri-

terion in large scale applications of kernel Fisher discriminant analysis, being

approximately seven times faster than conventional 10-fold cross-validation,

while achieving a similar level of generalisation.
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A Derivation of Closed Form Expression for Predicted Residuals

From e.g. (6) we know that the vector of model parameters p = (α, b) is given

by

p = (R+ZTZ)−1ZTy

where Z = [K 1]. For convenience, let C = R + ZTZ and d = ZTy, such

that p = C−1d. Furthermore, let Z(i) and y(i) represent the data with the ith
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observation deleted, then

C(i) = C − ziz
T
i ,

and

d(i) = d− yizi.

The Bartlett matrix inversion formula then gives

C−1
(i) = C +

C−1ziz
T
i C

−1

1− zTi C
−1zi

,

such that the vector of model parameters during the ith iteration of the leave-

one-out cross-validation procedure becomes

p(i) =

(

C +
C−1ziz

T
i C

−1

1− zTi C
−1zi

)

(d− yizi).

Let H = ZC−1ZT represent the hat matrix; note that the ith element of the

leading diagonal can be written hii = zTi C
−1zi, so expanding the brackets we

have

p(i) =C
−1d−C−1yizi +

C−1ziz
T
i C

−1

1− zTi C
−1zi

d−
C−1ziz

T
i C

−1

1− zTi C
−1zi

yizi

=p+

(

zTi p− yi
1− hii

)

C−1zi.

The residual error for the ith training pattern is ri = yi − z
T
i p and so

p(i) = p−
ri

1− hii
C−1zi.

Noting that o = Zp, the output of the model during the ith iteration of the

leave-one-out cross-validation procedure can be written as

o(i) = Zp(i) = t−
ri

1− hii
hi

where hi is the i
th column of H . The vector of residuals for the training pat-

terns during the leave-one-out cross-validation procedure can then be written
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in closed form as

r(i) = y − o(i) = r + ri
1

1− hii
hi.

The ith element of r(i) is given by

{r(i)}i =
ri

1− hii
.
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Figure Captions

Figure 1 : Decision boundary formed by kernel Fisher discriminant analysis

for a synthetic dataset.

Figure 2 : Graph of run-time as a function of the number of training patterns

for leave-one-out cross-validation of kernel Fisher discriminant classifiers via

direct and fast approximate methods (mean of 20 trials).

Table Captions

Table 1 : Comparison of kernel Fisher discriminant with leave-one-out and k-

fold model selection procedures using a simple least-squares criterion (LOO-

KFD and XVAL-KFD respectively), support vector machine (SVM) [2, 8],

kernel Fisher discriminant (KFD) [1], radial basis function (RBF) [35], Ad-

aBoost (AB) [34] and regularised AdaBoost (ABR) [32] classifiers on 13 dif-

ferent benchmark datasets [33]. The results for models SVM, KFD, RBF, AB

and ABR are taken from the study by Mika et al. [3, 33]. The results for each

method are presented in the form of the mean error rate over test data for 100

realisations of each dataset (20 in the case of the image and splice datasets),

along with the associated standard error. The best results are shown in bold-

face and the second best in italics.
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Dataset LOO-KFD XVAL-KFD SVM KFD RBF AB ABR

Banana 10.4 ± 0.04 10.4 ± 0.04 11.5 ± 0.07 10.8 ± 0.05 10.8 ± 0.06 12.3 ± 0.07 10.9 ± 0.04

Breast cancer 26.3 ± 0.42 26.1 ± 0.43 26.0 ± 0.47 25.8 ± 0.46 27.6 ± 0.47 30.4 ± 0.47 26.5 ± 0.45

Diabetes 23.1 ± 0.18 23.1 ± 0.17 23.5 ± 0.17 23.2 ± 0.16 24.3 ± 0.19 26.5 ± 0.23 23.8 ± 0.18

German 23.6 ± 0.20 23.7 ± 0.20 23.6 ± 0.21 23.7 ± 0.22 24.7 ± 0.24 27.5 ± 0.25 24.3 ± 0.21

Heart 15.9 ± 0.35 15.9 ± 0.33 16.0 ± 0.33 16.1 ± 0.34 17.6 ± 0.33 20.3 ± 0.34 16.5 ± 0.35

Image 4.0 ± 0.06 4.0 ± 0.006 3.0 ± 0.06 3.3 ± 0.06 3.3 ± 0.06 2.7 ± 0.07 2.7 ± 0.06

Ringnorm 1.4 ± 0.08 1.4 ± 0.08 1.7 ± 0.01 1.5 ± 0.01 1.7 ± 0.02 1.9 ± 0.03 1.6 ± 0.01

Solar flare 34.2 ± 1.63 34.2 ± 1.66 32.4 ± 0.18 33.2 ± 0.17 34.4 ± 0.2 35.7 ± 0.18 34.2 ± 0.22

Splice 10.8 ± 0.07 10.7 ± 0.06 10.9 ± 0.07 10.5 ± 0.06 10.0 ± 0.1 10.1 ± 0.05 9.5 ± 0.07

Thyroid 4.5 ± 0.20 4.5 ± 0.21 4.8 ± 0.22 4.2 ± 0.21 4.5 ± 0.21 4.4 ± 0.22 4.6 ± 0.22

Titanic 22.3 ± 0.12 22.3 ± 0.09 22.4 ± 0.1 23.2 ± 0.2 23.3 ± 0.13 22.6 ± 0.12 22.6 ± 0.12

Twonorm 2.7 ± 0.02 2.8 ± 0.02 3.0 ± 0.02 2.6 ± 0.02 2.9 ± 0.03 3.0 ± 0.03 2.7 ± 0.02

Waveform 9.7 ± 0.04 9.7 ± 0.04 9.9 ± 0.04 9.9 ± 0.04 10.7 ± 0.11 10.8 ± 0.06 9.8 ± 0.08



Efficient Leave-One-Out Cross-Validation of Kernel Fisher

Discriminant Classifiers

Gavin C. Cawley and Nicola L. C. Talbot

Summary

Mika et al. [1] apply the “kernel trick” to obtain a non-linear variant of

Fisher’s linear discriminant analysis method, demonstrating state-of-the-art

performance on a range of benchmark datasets. In this paper, we show that

leave-one-out cross-validation of kernel Fisher discriminant classifiers can be

implemented with a computational complexity of only O(`3) operations (the

same as that of the basic training algorithm), rather than the O(`4) of a

näıve implementation, where ` is the number of training patterns. Leave-one-

out cross-validation then becomes an attractive means of model selection in

large-scale applications of kernel Fisher discriminant analysis, being signifi-

cantly faster than conventional k-fold cross-validation procedures commonly

used. The proposed model selection criterion demonstrates competitive perfor-

mance, when compared with k-fold cross-validation, over a set of 13 synthetic

and real-world benchmark tasks, while being considerably faster.


