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Abstract.

Ridge regression is a classical statistical technique that attempts to address the
bias-variance trade-off in the design of linear regression models. A reformulation
of ridge regression in dual variables permits a non-linear form of ridge regression
via the well-known “kernel trick”. Unfortunately, unlike support vector regression
models, the resulting kernel expansion is typically fully dense. In this paper, we
introduce a reduced rank kernel ridge regression (RRKRR) algorithm, capable of
generating an optimally sparse kernel expansion that is functionally identical to that
resulting from conventional kernel ridge regression (KRR). The proposed method is
demonstrated to out-perform an alternative sparse kernel ridge regression algorithm
on the Motorcycle and Boston Housing benchmarks.
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1. Introduction

Ridge regression [4] is a method from classical statistics that imple-
ments a regularised form of least-squares regression. In its simplest
form, given training data,

D={z,y}_,, zcXCRY yecYVCR,

ridge regression determines the parameter vector, w € R?, of a linear
model, f(x) = w - , by minimising the objective function

1 vy ¢
Wrr(w) = 5”“”\2 ty > (i —w-x)”. (1)
=1

The objective function used in ridge regression (1) implements a form of
Tikhonov regularisation [12] of a sum-of-squares error metric, where -y
is a regularisation parameter controlling the bias-variance trade-off [2].
This corresponds to penalised maximum likelihood estimation of w,
assuming the targets have been corrupted by an independent and iden-
tically distributed (i.i.d.) sample from a Gaussian noise process, with
zero mean and variance o2, i.e.

yi=w-x; +¢, e~N(0,0%).

1.1. KERNEL RIDGE REGRESSION

A non-linear form of ridge regression [8, 10, 11| can be obtained via
the so-called “kernel trick”, whereby a linear ridge regression model is
constructed in a higher dimensional feature space, F (¢ : X — F),
induced by a non-linear kernel function defining the inner product

K(z,z') = ¢(z) - p(a').

The kernel function, £ : X x X — R may be any positive definite
“Mercer” kernel, for instance the Gaussian radial basis function (RBF)

kernel,
/ |l — ||
K(x,z') = exp {_T .

Note that the feature space F can be of an extremely high, or even
infinite dimensionality, and so it is not generally feasible to evaluate
the position of the data in feature space. Fortunately, the ridge regres-
sion algorithm can be expressed in such a way that the data, {x;}{_;,
appear only within inner products and can therefore be replaced by
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evaluation of the kernel. The objective function minimised in kernel
ridge regression can be written as,

1 ¥ ¢
Wkrr(w) = §Hw||2 + 7 Zf?,
i=1

subject to the constraints

S=yi—w-p(x;), Vie{l,2,.... 0}

The minimum of this optimisation problem coincides with the saddle-
point of the primal Lagrangian

¢ ¢
Ly(w, €, o) = %HU’HQ + % NG+ ailyi—w-d(w) — &), (2)
-1 =1

The conditions observed at the solution to this optimisation problem
can be stated as follows:

oL ‘

a—u]}o =0 = w= ;aqu(ml)v (3)
%[ﬁjp =0 = qa; = 2%&7 (4)
oL

805 =0 = &=y —w-d(x;). ()

Substituting (3-5) into (2) in order to eliminate w and &, we obtain
the dual Lagrangian,

¢ ¢ ¢

1 l

Ld(a) = —5 Z aiale(aci,wj) — E ZO&ZQ + Zyiai.
i,j=1 i=1 =1

The optimal values for the Lagrange multipliers, o = (a1, o, . . ., )T
are given by the minimiser of Ly. Differentiating with respect to v and
re-writing in matrix form,

Y -1
o= (K + I> Y,
2y
Where K = {kij}g,jzl’ kij = ]C(il)i,:lij), Yy = (yl,yz, . ,yg)T and I is
the identity matrix. From (3), we can see that the output of the kernel
ridge regression model is given by

¢
fl@) =D aip(x) - p(=),
i=1

1
= ZailC(:Bi,w).
i=1
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Unfortunately, unlike support vector regression models, this kernel ex-
pansion is in general fully dense, i.e. a; #0, Vi € {1,2,...,¢}. In this
paper, we propose a reduced rank training algorithm which produces
an equivalent sparse kernel expansion.

1.2. REDUCED RANK KERNEL RIDGE REGRESSION

The aim of reduced rank kernel ridge regression (RRKRR) is to identify
a subset, {x;}ies C D, of the training data ideally forming a basis in
feature space, such that the feature space image of any element of the
training data can be written as a weighted sum of the images of this
subset, i.e.

d(x) ~ () = > Go(wi), VaeD.

€S

The output of a kernel ridge regression model can then be written as
a sparse kernel expansion involving only terms corresponding to the
subset of the training data forming an approximate basis in feature
space,
f@) =) Bid(xi) p(x) =) Bik(zi,z).
€S i€S

In this paper, we show that the coefficients of this expansion can be
found efficiently by solving a family of only |S| linear equations in |S]|
unknowns (hence reduced rank kernel ridge regression). Furthermore,
provided a sparse, but complete basis can be identified, the above ap-
proximations become equalities and so the reduced rank kernel ridge
regression model is functionally identical to the conventional kernel
ridge regression model.

The remainder of this paper is structured as follows: Section 2 de-
scribes the formation of a basis of the images of the data in feature space
and goes on to present a reduced rank kernel ridge regression algorithm.
Section 3 provides a comparison of standard, sparse and reduced rank
kernel ridge regression algorithms. Section 4 provides some discussion
of some issues raised and suggests avenues for further research; the
work summarised in section 5.

2. Method

The method presented here consists of two parts, first a set of vectors
forming an approximate, or better still a complete basis describing the
training data in the feature space F is found, and then a linear ridge
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regression model constructed in the sub-space of F spanned by these
basis vectors.

2.1. FORMING A BASIS IN FEATURE SPACE

In this work we adopt the greedy algorithm due to Baudat and Anouar [1]
to construct a basis of the subspace of F populated by the training data,
which we briefly summarise here. The normalised Euclidean distance
between the position of a data item in feature space, ¢(x;), and é s(@i),
it’s optimal reconstruction using the set basis vectors {¢(x;)}ics, is
given by

5 o) — dsa)|”
e

This distance can be expressed in terms of inner products, so via the
“kernel trick”, we have

51 KEKGIKs:

Kii
where Kss is a square sub-matrix of K, such that Kss = {kij}ijes
and Kg; = (kji);.pes is a column vector of inner products. To form
a basis, we simply minimise the mean reconstruction error J; over all
patterns in the training set, i.e. maximise

4 T g—1

=1

Starting with S = (), a basis is constructed in a greedy manner, adding
to S the training vector maximising J(S) at each iteration. The algo-
rithm terminates when K ss is no longer invertible, indicating that a
basis has been identified.

2.2. A REDUCED RANK TRAINING ALGORITHM
Here we consider a formulation of kernel ridge regression including a
bias term [7], known as the least-squares support vector machine (LS-

SVM) [10, 11]. The mapping implemented by a least-squares support
vector machine is given by

¢
fl@)=w-d(x)+b=> aK(z;x)+b. (6)
i=1
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The optimal values for the weight vector, w, and bias, b, are given by
the minimum of the objective function

1 ¢
Wissvai(w,b) = 5 [lwl? + %Z —w- ¢(x;) — b)2.

Equivalently, the Lagrange multipliers minimising the corresponding
dual optimisation problem are given by the solution of an augmented

set of linear equations
a_ |y
b| [0]’

where Q@ = K + ¢y 'T and 1 = (1,1,...,1)T. If the weight vector, w,
can be represented as a weighted sum of basis vectors, i.e.,

w=> Bip(x:),

1€S

Q1
17 o

then we obtain the objective function minimised in reduced rank kernel
ridge regression,

¢
WRRKRR(B, ) Z BiBjkij %Z — > Bjkij — b)?

,]GS JjES

Setting the partial derivatives of Wrrkrr with respect to 3 and b to
zero, and dividing through by 2v/¢, yields:

Z@kawb_zyj

€S  j=1
and
Zﬁz( le+Zk]Tij> +bzk1r—zyz iy Vres
1€S

These equations can be expressed as a system of |S|+1 linear equations
in |S| + 1 unknowns,

[gTﬂm:[zi;yk]’

where Q = {w;; }i jes, wij = %kij—l—Zf,:l kyjkyi, ® is an |S|-dimensional

column vector, whose i*" element is given by

l
:Zkij, Vies,

j=1
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and c is an |S|-dimensional column vector, whose i'! element is given

by

l
C’izzyjkija VieS
j=1

(for notational convenience, we assume that the training data is re-

ordered such that S = {1,2,...,|S|}).

3. Results

In this section, the proposed reduced rank is evaluated over two well-
known benchmark datasets (Motorcycle, and Boston Housing), that
reveal both the strengths and limitations of this approach. The re-
sults obtained are compared with an alternative method of imposing
sparseness due to Suykens at al. [10]: A kernel ridge regression model
is trained on the entire dataset, yielding a vector of Lagrange mul-
tipliers, a. A small fraction of the data (say 5%), associated with
multipliers having the smallest magnitudes, are discarded and the ker-
nel ridge regression model retrained on the remaining data. This process
is repeated until a sufficiently small kernel expansion is obtained.

3.1. THE MOTORCYCLE DATASET

The Motorcycle benchmark consists of a sequence of accelerometer
readings through time following a simulated motor-cycle crash dur-
ing an experiment to determine the efficacy of crash-helmets (Silver-
man [9]). Figure 1 shows conventional and reduced rank kernel kernel
ridge regression models of the Motorcycle dataset, using a Gaussian
radial basis function kernel. The reduced rank model is functionally
identical to the standard kernel ridge regression model with only 18
basis vectors. The difference between the output of the reduced rank
and standard kernel ridge regression models is shown in figure 2; these
errors are very small in comparison with the scale of the data. Figure 3
compares the 10-fold root-mean-square (RMS) cross-validation error
of reduced rank and sparse kernel ridge regression algorithms as a
function of the number of training patterns included in the resulting
kernel expansions. The regularisation and kernel parameters were de-
termined in each trial via minimisation of the 4-fold cross-validation
error using the Nelder-Mead Simplex method [6]. The cross-validation
error is consistently lower for the reduced rank model regardless of the
number of patterns forming the kernel expansion, becoming greater as
the number of patterns decreases.
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Figure 1. Kernel ridge regression (KRR) and reduced rank kernel ridge regression
(RRKRR) models of the Motorcycle data set; note the standard and reduced rank
kernel ridge regression models are essentially identical.
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Figure 2. Difference between kernel ridge regression (KRR) and reduced rank kernel
ridge regression (RRKRR) models of the Motorcycle data set.

3.2. THE BosTON HOUSING DATASET

The Boston Housing dataset describes the relationship between the
median value of owner occupied homes in the suburbs of Boston and
thirteen attributes representing environmental and social factors be-
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lieved to be relevant [3]. In this case, for a Gaussian radial basis kernel,
the feature vector selection process is unable to form a sparse basis.
Figure 4 compares the 10-fold root-mean-square (RMS) cross-validation
error of reduced rank and sparse kernel ridge regression algorithms as
a function of the number of training patterns included in the result-
ing kernel expansions. Again, the regularisation and kernel parameters
were determined in each trial via minimisation of the 4-fold cross-
validation error. Although a sparse basis could not be found, the feature
vector selection process identifies a near-optimal ranking of training
patterns and so results in a good sparse approximation of the full kernel
expansion.

4. Discussion

The most important aspect of the reduced rank kernel ridge regression
algorithm is that at most only |S| columns of the kernel matrix, K,
need be stored in memory. The reduced rank training algorithm is
therefore far better suited to large-scale applications, where the number
of training patterns is sufficiently large that storage of the full kernel
matrix is impractical and so the conventional training algorithm can
not be used.
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Figure 8. Cross-validation error of reduced rank and sparse kernel ridge regression
models, over the motorcycle dataset, as a function of the number of training patterns
included in the resulting kernel expansions.
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Figure 4. Cross-validation error of reduced rank and sparse kernel ridge regression
models, over the Boston housing dataset, as a function of the number of training
patterns included in the resulting kernel expansions.

The reduced rank kernel ridge regression method consistently out-
performs the sparse kernel ridge regression approach on all datasets
investigated, the gap in performance widening as terms are dropped
from the kernel expansion. The principle reason for this is that sparse
kernel ridge regression ignores the residuals for patterns not used to
form the kernel expansion. In effect, the sparse kernel ridge regres-
sion algorithm solves a sequence of regression problems that become
progressively less and less representative of the data as a whole. The
objective function used in the reduced rank training algorithm, on the
other hand, includes the residuals for all training patterns regardless of
the size of the kernel expansion.

For model selection via cross-validation, there is no reason why the
feature vector selection should not be performed only once over the
whole dataset and then multiple models trained using the extracted
basis vectors. In this way the expense of basis selection can be amortised
across several models in an iterative model selection process, especially
if selection of kernel parameters is performed in an “outer loop”, while
selection of the regularisation parameter is performed in an “inner
loop”.

If the feature vector selection extracts a set of data forming a com-
plete basis for the data in feature space, the resulting kernel expansion
will be exactly equivalent to the full least-squares support vector ma-
chine. It is not in general possible to extract a full basis for some kernel
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functions, such as the RBF kernel used here [5]. However, for datasets
with a low intrinsic dimensionality (e.g. the Motorcycle dataset) an
extremely close approximate sparse basis may be found. For datasets
where a sparse basis cannot be found, the method of Baudat and
Anouar [1] still determines a near optimal ordering of training patterns
for inclusion in the kernel expansion.

5. Summary

This paper proposed a novel reduced rank training algorithm for kernel
ridge regression models. The method demonstrates performance supe-
rior to that of sparse least-squares support vector machines on a range
of benchmark tasks. The method also provides an plausible approach
for large-scale regression problems as it is not necessary to store the
entire kernel matrix.
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