Manuscript Number : 2092

On a Fast Compact Approximation of

the Exponential Function

Gavin C. Cawley
University of East Anglia

Abstract

In a recent issue, Schraudolph (Schraudolph, 1999) describes an
ingenious, fast and compact approximation of the exponential func-
tion through manipulation of the components of a standard (IEEE-
754 (IEEE, 1985)) floating point representation. This brief note com-
municates a re-coding of this procedure that overcomes some of the
limitations of the original macro at little or no additional computa-

tional expense.

1 Motivation

Schraudolph quite rightly describes exponentiation as the quintessential non-
linear function of neural computation, and provides C code implementing
a fast approximation of this function, providing impressive speed improve-
ments in both benchmark tests and in a real-world application (JPEG qual-
ity transcoding (Lazzaro and Wawrzynek, 1999)). The use of a static global
variable is however problematic in a multi-threaded environment. This note
describes a re-implementation of the algorithm that eliminates the global

variable without incurring significant additional computational expense.



2 The Algorithm

IEEE standard 754 stipulates that double precision floating point numbers
should be represented in the form (—1)%(1 4 m)2* %0, where s is the sign bit,
m is the 52-bit normalised mantissa (a binary fraction in the range (0, 1])
and z is the 11-bit exponent with a bias xqg = 1023. Schraudolph’s fast ap-
proximation to the exponential function is based on the identity e¥ = 2¥/1n2,
Setting the exponent, z, equal to the integer part of y/In2 + z, provides
a simple approximation to e¥. This approach can be implemented using a
C/C++ union construct allowing a double precision IEEE-754 floating point
number, d, to be stored in the same locations in memory as a structure

comprised of two 32-bit signed integers, ¢+ and j, as shown in fig 1. Setting

220y
;o= 2 J 220 —C
7 2 —+ o
J =20

results in the integer part of d containing the integer part of y/1In 2+ xg, the
factor of 22° providing the necessary shift left of 20 places. The fractional part
overflows into the most significant bits of the mantissa, providing a degree
of linear interpolation between integral values. The parameter C' provides
some control over the error properties of the approximation, a value of 60801

minimises the root-mean-square (RMS) relative error.

3 The Implementation

The revised C++ implementation is shown in figure 2. The EXP macro has
been replaced by an inline function, exponential, and the global static vari-
able _eco is replaced by the local variable of exponential. This approach
brings two benefits: Firstly this implementation is more suitable for use in
multi-threaded programs as the static global variable has been eliminated.

Secondly the use of a function, instead of a macro, more cleanly encapsulates



the algorithm and permits better use of type-checking rules. Note that this
code can also be compiled by a standard ANSI C compiler if the inline
keyword is omitted.

4 Benchmark Results

Table 1 displays benchmark results for the original and revised implementa-
tions of Schraudolph’s approximation. The benchmark used is similar to that
used by Schraudolph, except that for accuracy the sum of 10° exponentials
of random arguments is computed. Note that the exponential function is
slightly faster than the EXP macro, except in the case of the Sun workstation

where the EXP macro is marginally faster.

Table 1: Seconds required for 10° exponentiations.

Manufacturer Intel Intel Sun DEC
Processor Pentium Pentium UltraSparc Alpha
Model /Speed 11/300 Xeon/450  Ultra 5/360 500au,/500
LITTLE_ENDIAN Yes Yes No Yes
Op. System WinNT Linux Sun OS 5.7 Digital UNIX V4.0E
Compiler eges-2.91.57  eges-2.90.27 CC 5.0 DEC C V5.8-009
Source C C++ C++ C
Optimisation -03 -01 -0O4 -02
exp (libm.a) 918 431 677 130
EXP macro 415 281 125 41
exponential function 391 261 129 40

The ISO/ANSI C++ standard (ISO/IEC, 1998) states that the inline
keyword suggests, but does not require, that the statements comprising the
body of the function should be expanded into the body of the calling function,
eliminating the computational expense of the function call. However, most
modern C and C++ compilers are capable of performing this optimisation,

especially in the case of small leaf functions, such as this. One might still



expect the revised code to be slower as a local variable must be allocated
and initialised each time the function is called, whereas the original macro is
able to reuse a global variable that is statically allocated and initialised. The
function though, does not have the side effect of modifying a global variable.
As it is generally infeasible for the compiler to determine statically whether
this value is ever used, the original macro must contain code to update the
global variable, whereas the function can be optimised so that the temporary

variable only exists within registers.

5 Summary

A re-coding of the splendid approximation of the exponential function de-
scribed by Schraudolph is presented. Without incurring a significant addi-

tional computational expense, it provides the following additional benefits:

e The re-implementation is better suited to a multi-threaded environment

as the static global variable has been eliminated.

e Type-checking rules can be applied more strongly, and the algorithm

is encapsulated more cleanly, for improved reliability.

6 Acknowledgements

The author would like to thank Mark Fisher, Danilo Mandic and the anony-
mous reviewers for their helpful comments and Shaun McCullagh for his

assistance in collecting the benchmark results.



References

IEEE (1985). Standard for binary floating-point arithmetic IEEE/ANSI Std.
754-1985. American National Standards Institute/Institute of Electrical

and Electronic Engineers, New York.

ISO/IEC (1998). Programming languages - C++ ISO/IEC Std. 144882-
1998(E). American National Standards Institute, New York.

Lazzaro, J. and Wawrzynek, J. (1999). JPEG quality transcoding using
neural networks trained with a perceptual error measure. Neural Com-
putation, 11(1):267-298.

Schraudolph, N. N. (1999). A fast, compact approximation of the exponential
function. Neural Computation, 11(4):853-862.



SXXXXXXX | XXXXMImm | mmmmmmmm | mmmmmmmm | Dmmmmmmm | mmmmmmmn | mmmmmmmmo | ;mmmmmmm
1 2 3 4 5 6 7 8
iiiididi | didddddd | dddddddd | iddddddd | 3335333 | 33333333 | 33333333 | 33333333
1 I 1 I
i ]

Figure 1: Bit representation of the union data structure used by the
exponential function (Schraudolph, 1999).



#define EXP_A (1048576/M_LN2)
##define EXP_C 60801

inline double exponential(double y)
{

union
{
double d;
#ifdef LITTLE_ENDIAN
struct { int j, i; } n;

#elseif
struct { int i, j; } n;
#endif
}
_eco;
_eco.n.i = (int) (EXP_A*(y)) + (1072693248 - EXP_C);

_eco.n.j = 0;

return _eco.d;

Figure 2: C++ code fragment implementing a fast approximation of the
exponential function.



