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Abstract Kernel logistic regression (KLR) is the kernel learning method best
suited to binary pattern recognition problems where estimates of a-posteriori prob-
ability of class membership are required. Such problems occur frequently in prac-
tical applications, for instance because the operational prior class probabilities or
equivalently the relative misclassification costs are variable or unknown at the time
of training the model. The model parameters are given by the solution of a convex
optimisation problem, which may be found via an efficient iteratively re-weighted
least squares (IRWLS) procedure. The generalisation properties of a kernel logistic
regression machine are however governed by a small number of hyper-parameters,
the values of which must be determined during the process of model selection.
In this paper, we propose a novel model selection strategy for KLR, based on a
computationally efficient closed-form approximation of the leave-one-out cross-
validation procedure. Results obtained on a variety of synthetic and real-world
benchmark datasets are given, demonstrating that the proposed model selection
procedure is competitive with a more conventional k-fold cross-validation based
approach and also with Gaussian process (GP) classifiers implemented using the
Laplace approximation and via the Expectation Propagation (EP) algorithm.
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1 Introduction

Kernel learning methods (see e.g. [30,37,40]), such as the support vector machine
[4,18,46], kernel Fisher discriminant analysis [26,27], kernel ridge regression [35]
and kernel principal component analysis [38,27], have attracted considerable in-
terest in the machine learning community in recent years, due to a combination
of mathematical tractability and state-of-the-art performance demonstrated over a
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wide range of benchmark datasets (e.g. [8]) and real-world applications (e.g. [6]).
Kernel learning methods generally aim to construct a linear model in a feature
space induced by a positive definite Mercer kernel [25]. Depending on the choice
of kernel, the feature space may be of high or even infinite dimension, while deal-
ing with only finite dimensional quantities, such as the kernel matrix giving the
value of the kernel function for every pair of data points comprising the training
sample. The richness of the feature space allows the construction of very complex,
powerful models, however Tikhonov regularisation [45] has proved an effective
means of capacity control, preventing over-fitting and optimising generalisation.
The linear nature of the underlying model means that the optimal model param-
eters are often given by the solution of a convex optimisation problem [5], with
a single global optimum, for which efficient algorithms exist. The generalisation
properties of kernel methods however tend to be heavily dependent on the values of
a small number of hyper-parameters, including regularisation parameters [45] and
parameters defining the kernel function [16]. The search for the optimal values of
these hyper-parameters is a process known as model selection. Unfortunately the
model selection criteria for kernel learning methods are not generally unimodal,
and so this paper is concerned with efficient search methods for finding a locally
optimal set of hyper-parameter values.

The most common approach to model selection aims to minimise some form
of cross-validation [41] estimate of an appropriate model selection criterion, for
example the misclassification rate or perhaps the cross-entropy in the case of a
statistical pattern recognition problem. Under a k-fold cross-validation scheme, the
available data are divided into k disjoint subsets. A model is then trained on k−1
of these subsets and the model selection criterion evaluated on the unused subset.
This procedure is then repeated for all k combinations of k−1 subsets. The k-fold
cross-validation estimate for the model selection criterion is then simply the mean
of the model selection criterion computed over the unused subset in each fold.
Cross-validation makes good use of the available data as all data are used as both
training and test data. The most extreme form of k-fold cross-validation, in which
each subset consists of a single training pattern is known as leave-one-out cross-
validation [23]. An attractive property of leave-one-out cross-validation for model
selection purposes is that it provides an almost unbiased estimate of generalisation
performance [24]. The regularisation and kernel parameters can then be tuned via
minimisation of the leave-one-out error using standard optimisation techniques,
such as the Nelder-Mead simplex algorithm.

Unlike kernel methods based on a least-squares training criterion, exact leave-
one-out cross-validation of kernel logistic regression cannot be performed effi-
ciently in closed-form. However in this paper, we propose a useful approxima-
tion, based on exact leave-one-out cross-validation of the quadratic approximation
to the regularised training criterion obtained during the final iteration of the IR-
WLS training algorithm. This extends an existing efficient leave-one-out method
for kernel Fisher discriminant analysis [8] to be adapted for computationally ef-
ficient model selection for a family of kernel learning methods, including kernel
logistic regression. The approximation is also shown to be equivalent to taking
a single Newton step to minimise the reduced training criterion in each iteration
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of the leave-one-out procedure, starting from the optimal parameters for a model
fitted to the entire training sample (see Appendix A).

The remainder of this paper is structured as follows: Section 2 introduces
the kernel logistic regression model and introduces the notation used through-
out. Section 3 proposes a simple model selection procedure for KLR based on
an efficient, closed-form approximation of the leave-one-out and k-fold cross-
validation estimates of the test cross-entropy. Section 4 compares model selection
procedures based on approximate leave-one-out and conventional k-fold cross-
validation. Results are also obtained for expectation-propagation based Gaussian
process classifiers, providing a state-of-the-art baseline for comparison purposes.
Results presented in Section 4 demonstrate that the approximate leave-one-out
cross-validation procedure is competitive with the alternative procedures, at a vastly
reduced computationally expense. Finally, the work is summarised and conclu-
sions drawn in Section 5.

2 Kernel Logistic Regression

In this section, we provide a brief overview of the kernel logistic regression (KLR)
model, and introduce the notation used throughout. In an off-line statistical pattern
recognition problem, we are given labelled training data,

D = {(xi, ti)}`
i=1 , xi ∈X ⊂ Rd , ti ∈ [0, 1],

on which a decision rule is trained to discriminate between examples belonging
to positive and negative classes, where xi represents a vector of d input variables
describing the ith example, and ti indicates the class of the ith example, where
ti = 1 if the example belongs to the positive class C+ and ti = 0 if it belongs to
the negative class C−. Kernel logistic regression aims to construct a familiar linear
logistic regression model in a high-dimensional feature space induced by a Mercer
kernel, giving rise to a non-linear form of logistic regression, i.e.

logit{y(x)}= w ·φ(x)+b, where logit{p}= log
{

p
1− p

}
,

w is a vector of model parameters, φ(·) represents a non-linear transformation of
the input vectors. Equivalently, we could write

y(x) =
1

1+ exp{−w ·φ(x)−b}

The logit link function constrains the output of the model to lie in the range [0, 1].
Rather than specifying the transformation φ : X →F directly, it is implied by a
Mercer kernel, K : X ×X → R, which evaluates the inner product between the
images of vectors in the feature space, F ,

K (x,x′) = φ(x) ·φ(x′).

For the interpretation of the kernel function as an inner product in a fixed feature
space to be valid, the kernel must obey Mercer’s condition [25], i.e. the kernel
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or Gram matrix, K = [ki j = K (xi,x j)]
`
i, j=1, must be positive (semi)-definite. The

kernel most commonly used in practical applications of kernel learning methods
is the squared exponential, or radial basis function (RBF), kernel,

K (x,x′) = exp
{
−θ‖x− x′‖2} , (1)

where θ is a kernel parameter controlling the sensitivity of the kernel. Interpreting
the output of the kernel logistic regression model as an estimate of the a-posteriori
probability of class membership, then provided the data represent an i.i.d. (inde-
pendent and identically distributed) sample from a Bernoulli distribution condi-
tioned on the input variables, the likelihood of the training data is given by

L =
`

∏
i=1

yti
i [1− yi]

1−ti ,

where yi = y(xi). The optimal vector of model parameters, w, is found by minimis-
ing a cost function representing the regularised [45] negative log-likelihood of the
training data, in this case known as the cross-entropy,

E =
1
2
‖w‖2− γ

2

`

∑
i=1

[ti log{yi}+(1− ti) log{1− yi}] , (2)

where γ is a regularisation parameter controlling the bias-variance trade-off [19].
The representer theorem [22,36] states that the solution to an optimisation prob-
lem of this nature can be written in the form of a linear combination of the training
patterns, i.e.

w =
`

∑
i=1

αiφ(xi),

which implies that

logit{y(x)}=
`

∑
i=1

αiK (xi,x)+b and ‖w‖2 = α
T Kα,

where α = (α1,α2, . . . ,α`) is a vector of dual model parameters. The benefit of
the “kernel trick” then becomes apparent; it allows us to construct powerful linear
models in very high (potentially infinite) dimensional feature spaces using mathe-
matics involving only finite quantities, such as the `× ` Gram matrix.

2.1 Iteratively Re-weighted Least Squares Training Procedure

The objective function for a wide range of kernel learning methods, including
kernel logistic regression, can be written in the form,

E =
1
2
‖w‖2 + γ

`

∑
i=1

c(yi, ti) (3)



Efficient Approximate Leave-One-Out Cross-Validation for KLR 5

where c(·, ·) is a convex loss function, in this case the negative log-likelihood as-
suming a Bernoulli trial, c(y, t) = −[t logy + (1− t) log(1− y)]. A closed form
expression for the minimum of the objective function (3) is not immediately appar-
ent, and so it is most easily minimised via an iteratively re-weighted least-squares
(IRWLS) procedure, commonly used in training conventional logistic regression
models and radial basis function (RBF) networks [31]. Let zi represent the output
of the kernel machine for the ith training pattern, prior to the non-linear transform,

zi =
`

∑
j=1

α jK (x j,xi)+b.

In the case of kernel logistic regression, zi represents the log-odds ratio. The first
and second derivatives of the loss, with respect to zi, are then given by

∂ci

∂ zi
= yi− ti and

∂ 2ci

∂ z2
i

= yi(1− yi),

where ci = c(yi, ti). As we are interested only in minimising the convex loss func-
tion, we substitute a weighted least-squares criterion, providing a local approxi-
mation of ci only up to some arbitrary constant, C, i.e.

qi =
βi

2
[ηi− zi]2 ≈ c(yi, ti)+C.

Clearly, we require the curvature of qi and ci, with respect to zi, to be identical at
zi, and therefore

∂ 2qi

∂ z2
i

=
∂ 2ci

∂ z2
i

=⇒ βi = yi(1− yi).

We also require the gradient of qi, with respect to zi, to match that of ci, such that

∂qi

∂ zi
=−βi [ηi− zi] =

∂ci

∂ zi
=⇒ ηi = zi−

yi− ti
yi(1− yi)

.

The original objective function (2), can then be solved iteratively, alternating up-
dates of the dual parameters, (α, b), via a regularised weighted least-squares loss
function,

L̃σ =
1
2
‖w‖2 +

γ

2

`

∑
i=1

βi[ηi− zi]2, (4)

and updates of the weighting coefficients, β = (β1,β2, . . . ,β`), and targets, η =
(η1,η2, . . . ,η`). In the case of kernel logistic regression, the update formulae are:

βi = yi(1− yi) and ηi = zi−
yi− ti

yi(1− yi)
. (5)

The weighted least-squares problem (4) can also be solved via a system of lin-
ear equations, with a computational complexity of O(`3) operations, as follows:
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Minimising (4) can be recast in the form of a constrained optimisation problem
[43],

min J =
1
2
‖w‖2 +

γ

2

`

∑
i=1

βiε
2
i (6)

subject to
ηi = w ·φ(xi)+b+ εi, ∀ i ∈ {1,2, . . . , `}, (7)

The primal Lagrangian for this optimisation problem gives the unconstrained min-
imisation problem,

L =
1
2
‖w‖2 +

γ

2

`

∑
i=1

βiε
2
i −

`

∑
i=1

αi {w ·φ(xi)+b+ εi−ηi} ,

where α = (α1,α2, . . . ,α`) ∈ R` is a vector of Lagrange multipliers. The optimal-
ity conditions for this problem can be expressed as follows:

∂L

∂w
= 0 =⇒ w =

`

∑
i=1

αiφ(xi) (8)

∂L

∂b
= 0 =⇒

`

∑
i=1

αi = 0 (9)

∂L

∂εi
= 0 =⇒ αi = βiγεi, ∀i ∈ {1,2, . . . , `} (10)

∂L

∂αi
= 0 =⇒ w ·φ(xi)+b+ εi−ηi = 0, ∀ i ∈ {1,2, . . . , `}. (11)

Using (8) and (10) to eliminate w and ε = (ε1,ε2, . . . ,ε`), from (11), we find that

`

∑
j=1

α jφ(x j) ·φ(xi)+b+
αi

γβi
= ηi ∀ i ∈ {1,2, . . . , `} (12)

Noting that K (x,x′) = φ(x) ·φ(x′), the system of linear equations can be written
more concisely in matrix form as[

K + 1
γ
B 1

1T 0

][
α

b

]
=
[

η

0

]
, (13)

where K = [ki j = K (xi,x j)]
`
i, j=1 and B = diag{β

−1
1 ,β−1

2 , . . . ,β−1
` }. The optimal

parameters for the kernel machine can then be obtained with a computational com-
plexity of O(`3) operations. Note that the iteratively re-weighted least-squares (IR-
WLS) procedure is equivalent to the application of Newton’s method. We present
the learning algorithm in terms of IRWLS here as the proposed approximate leave-
one-out method is an extension of an existing exact method for weighted least-
squares models.
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2.2 Efficient Implementation Via Cholesky Decomposition

A more efficient training algorithm can be obtained, taking advantage of the special
structure of the system of linear equations. The system of linear equations (13) to
be solved during each step of the iteratively re-weighted least squares procedure is
given by, [

M 1
1T 0

][
α

b

]
=
[

η

0

]
, (14)

where M = K +γ−1B. Unfortunately the matrix on the left-hand side is not positive
definite, and so we cannot solve this system of linear equations directly using the
Cholesky decomposition [20]. However, the first row of (14) can be re-written as

M
(
α +M−11b

)
= η (15)

Rearranging (15), we see that α = M−1 (η−1b), using this result to eliminate α ,
the second row of (14) can be written as,

1T M−11b = 1T M−1
η (16)

The system of linear equations (14) can be then be solved by first solving two
positive definite linear systems

Mξ = 1 and Mζ = η , (17)

and then updating the model parameters of the kernel logistic regression machine
as follows:

b =
1T

ζ

1T
ξ

and α = ζ −ξ b.

The two systems of linear equations (17) can be solved efficiently using the Cholesky
decomposition of M = RT R, where R is the upper triangular Cholesky factor of M
[44]. Note that the computational complexity of the Cholesky decomposition is
O(`3), but that of the back-substitution used in solving the two systems of linear
equations is only O(`2) operations. As a result, the Cholesky decomposition is
both computationally efficient as well as numerically more robust [20].

3 Cross-Validation Based Model Selection Strategies

The simplest form of model selection criterion typically partitions the available
data into training, validation and test sets. The training set is used to determine
the optimal values of the model parameters, an appropriate performance measure
is evaluated over the validation or hold-out set in order to optimise the hyper-
parameters and the test set is used to obtain an unbiased estimate of generalisa-
tion performance. If data is relatively scarce, a cross-validation procedure is often
used [41]. Under a k-fold cross-validation strategy, the data are partitioned into
k subsets of approximately equal size. Models are then trained on each of the k
combinations of k− 1 subsets, in each case the performance of the model is es-
timated using the remaining subset not forming part of the training data for that
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model. The cross-validation estimate of a given performance metric is simply the
mean of the performance in each fold of the cross-validation procedure. Cross-
validation clearly makes better use of the available data as every pattern is used
as both a training and a test pattern. The most extreme form of cross-validation,
in which each subset contains only a single pattern, is known as leave-one-out
cross-validation [23]. Leave-one-out cross-validation is often used in model selec-
tion, partly as it is known to be approximately unbiased [24], but also because it
can be implemented very efficiently in the case of linear regression, least-squares
kernel learning methods [1,17,49,8,10,3,34] and k-nearest neighbour methods,
or approximated efficiently in the case of the support vector machine [16]. In this
paper, in addition to investigating conventional cross-validation based model se-
lection strategies, we also propose an approximate leave-one-out cross-validation
method for kernel logistic regression based on existing efficient methods for least-
squares kernel learning methods, the method presented here being a greatly refined
version of the method briefly outlined in Cawley & Talbot [9]. However, the ap-
proach is quite general, and can easily be applied to any kernel regression method
with a convex loss function, c(·, ·).

3.1 Approximate Leave-One-Out Cross-Validation

The optimal values for the parameters of a kernel regression model are iteratively
determined via a sequence of weighted least-squares optimisation problems. It is
well known that leave-one-out cross-validation of least-squares models can be per-
formed very efficiently in closed form [17,49,21,8,10]. These methods can be ex-
tended to provide an approximate leave-one-out cross-validation method for kernel
regression methods with an arbitrary loss, via exact leave-one-out cross-validation
of the quadratic approximation (4) of the true loss minimised in the final iteration
of the IRWLS training procedure [21,9]. The matrix on the left-hand side of (13)
can be decomposed into block-matrix representation, as follows:[

K + γ−1B 1
1T 0

]
=
[

c11 cT
1

c1 C1

]
= C. (18)

Let [α(−i);b(−i)] represent the parameters of the kernel machine during the ith iter-
ation of the leave-one-out cross-validation procedure, then in the first iteration, in
which the first training pattern is excluded,[

α(−1)

b(−1)

]
= C−1

1 [η2, . . . ,η`,0]T .

The leave-one-out prediction for the first training pattern is then given by,

ẑ(−1)
1 = cT

1

[
α(−1)

b(−1)

]
= cT

1 C−1
1 [η2, . . . ,η`,0]T

Considering the last ` equations in the system of linear equations (13), it is clear
that [c1 C1] [α1, . . . ,α`,b]T = [η2, . . . ,η`,0]T , and so

ẑ(−1)
1 = cT

1 C−1
1 [c1 C1]

[
α

T ,b
]T = cT

1 C−1
1 c1α1 + c1 [α2, . . . ,α`,b]T .
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Noting, from the first equation in the system of linear equations (13), that η1 =
c11α1 + cT

1 [α2, . . . ,α`,b]T , thus

ẑ(−1)
1 = η1−α1

(
c11− cT

1 C−1
1 c1

)
Finally, via the block matrix inversion lemma,[

c11 cT
1

c1 C1

]−1

=
[

κ−1 −κ−1c1C−1
1

C−1
1 +κ−1C−1

1 cT
1 c1C−1

1 −κ−1C−1
1 cT

1

]
, (19)

where κ = c11 − cT
1 C−1

1 c, and noting that the system of linear equations (13) is
insensitive to permutations of the ordering of the equations and of the unknowns,
we have that,

ẑ(−i)
i = ηi−

αi

C−1
ii

. (20)

This means that, assuming the system of linear equations (13) is solved via ex-
plicit inversion of C, an approximate leave-one-out cross-validation estimate of
the test loss (22) can be evaluated using information already available as a by-
product of training the least-squares support vector machine on the entire dataset.
This approximation is based on the assumption that the parameters of the quadratic
approximation of the regularised loss function, β and η are essentially unchanged
during the leave-one-out cross-validation procedure (c.f. [21]). Essentially we sub-
stitute a leave-one-out cross-validation of the model using the quadratic approx-
imation for a leave-one-out cross-validation using the true loss. Alternatively, as
described in Appendix A, we can view the approximation as taking a single New-
ton step of the reduced training criterion in each fold of the leave-one-out proce-
dure, starting from the vector of model parameters minimising the regularised loss
on the entire training sample.

3.2 Efficient Implementation via Cholesky Factorisation

The approximate leave-one-out cross-validation estimator for kernel logistic re-
gression is described by (20). The coefficients of the kernel expansion, α , can
be found efficiently, via iteratively re-weighted least squares based on Cholesky
factorisation, as described in Section 2.2. However we must also determine the
diagonal elements of C−1 in an efficient manner. Using the block matrix inversion
formula, we obtain

C−1 =
[

M 1
1T 0

]−1

=
[

M−1 +M−11S−1
M 1T M−1 −M−11S−1

M
−S−1

M 1T M−1 S−1
M

]
where M = K + γ−1B and SM = −1T M−11 = −1T

ξ is the Schur complement of
M. The inverse of the positive definite matrix, M, can be computed efficiently from
its Cholesky factorisation, via the SYMINV algorithm [39], for example using the
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LAPACK [2] routine DTRTRI. Let R = [ri j]
n
i, j=1 be the lower triangular Cholesky

factor of the positive definite matrix M, such that M = RRT . Furthermore, let

S = [si j]
n
i, j=1 = R−1, where sii =

1
rii

and si j =−sii

i−1

∑
k=1

riksk j,

represent the (lower triangular) inverse of the Cholesky factor. The inverse of M is
then given by M−1 = ST S. In the case of efficient approximate leave-one-out cross-
validation of kernel logistic regression machines, we are principally concerned
only with the diagonal elements of M−1, given by

M−1
ii =

i

∑
j=1

s2
i j =⇒ C−1

ii =
i

∑
j=1

s2
i j +

ξ 2
i

SM
∀ i ∈ {1,2, . . . , `}.

The computational complexity of the basic training algorithm is O(`3) operations,
being dominated by the evaluation of the Cholesky factor. However, the compu-
tational complexity of the analytic approximate leave-one-out cross-validation ap-
proximation, when performed as a by-product of the training algorithm, is only
O(`) operations. The computational expense of the leave-one-out cross-validation
procedure therefore rapidly becomes negligible as the training set becomes larger.

Note that the proposed approximate leave-one-out cross-validation procedure
is quite general, and can be applied to kernel regression machines with an essen-
tially arbitrary convex loss, for instance kernel Poisson regression [7]. The support
vector machine [4,18] can also be trained in primal form via Newton’s method
[14,15], where the approximate leave-one-out cross-validation method given here
is equivalent to the span bound [47,16]. It should be noted, however, that the pro-
posed leave-one-out cross-validation method is not suitable for large scale appli-
cations in its current form, due to the computational complexity of O(`3) oper-
ations. For large scale applications, sparse algorithms, such as the import vector
machine [52], could be used. However, if a sparse set of basis vectors has been
identified, an approximate leave-one-out cross-validation method for sparse ker-
nel logistic regression would be feasible based on the corresponding approach for
sparse least-squares kernel machines [9,10].

3.3 Optimisation Strategies

In practical applications of kernel learning methods the hyper-parameters are most
often selected via a simple grid-based search method, in which the model selection
criterion is evaluated at a set of points, forming a regular grid with even spacing,
normally over a logarithmic scale. An improved hierarchical grid search proce-
dure repeats this process, each time using a refined grid centered on the best solu-
tion found at the previous scale. However, grid-search procedures rapidly become
computationally unfeasible as the number of hyper-parameters to be optimised
grows larger than only two or three. However, if the model selection strategy is
a relatively smooth function of the hyper-parameters, the Nelder-Mead simplex
optimisation algorithm [32], as implemented by the fminsearch routine of the
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MATLAB optimisation toolbox, provides a simple and efficient alternative, as long
as the number of hyper-parameters remains relatively small (less than about ten).
For problems with a larger vector of hyper-parameters, gradient-based methods
are likely to be more efficient, for instance conjugate-gradient methods, as imple-
mented by the fminunc routine of the MATLAB optimisation toolbox, or scaled
conjugate gradient optimisation [51]. Appendix B provides the derivation of gradi-
ent information with a computational complexity of O(`3 +d`2) operations, where
d is the number of kernel parameters. Note that for the Gaussian process classi-
fier based on the Laplace approximation, the gradient of the marginal likelihood,
with respect to the parameters of the covariance function, can be evaluated with
a complexity of O(d`2) operations (provided the inverse of the covariance matrix
is available as a by-product of fitting the model). The computational expense of
model selection for LOO-KLR and L-GPC can thus be expected to exhibit simi-
lar scaling. However, when fitting models with many hyper-parameters there is a
danger of over-fitting the model selection criterion, and so the addition of a regu-
larisation term to the selection criterion may be beneficial [11]. It should be noted
however, that the use of gradient-based methods does not necessitate the analytic
computation of gradient information (c.f. [3]) as the required partial derivatives can
also be approximated by the method of finite-differences, albeit with an increased
complexity of O(d`3) operations.

3.4 Model Selection for Gaussian Process Classifiers

An estimate of the leave-one-out cross-validation loss is also available as a by-
product of fitting a Gaussian process classifier using the Expectation Propagation
algorithm [29,34]. This approach is equivalent to the mean-field methods intro-
duced by Opper and Winther [33]. Sundararajan and Keerthi [42] present a leave-
one-out cross-validation procedure for hyper-parameter selection in Gaussian pro-
cess regression, also discussed in Rasmussen and Williams [34]. The Gaussian pro-
cess classifier based on the Laplace approximation [50] also uses a model selection
criterion, in this case the marginal likelihood, evaluated using a quadratic approx-
imation to the regularised loss function. The model selection process for Gaussian
process classifiers under the Laplace approximation thus bears some similarities
with the proposed approximate leave-one-out cross-validation method.

4 Results

We begin by investigating the accuracy of the approximate leave-one-out method
using Ripley’s synthetic data. Figure 1 shows a kernel logistic regression
model of this dataset, using an isotropic radial basis function kernel. Figure 2
shows contour plots of the cross-entropy loss for a kernel logistic regression model
of Ripley’s synthetic data, using an isotropic radial basis function kernel, com-
puted using the proposed approximate leave-one-out method, exact leave-one-out,
10-fold cross-validation and the test loss as a function of the hyper-parameters.
It is clear that the approximate leave-one-out loss behaves in a similar manner to
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Fig. 1 Kernel logistic regression model of Ripley’s synthetic data, with isotropic radial
basis function kernel and approximate leave-one-out cross-validation based model selec-
tion.

the exact leave-one-out loss, without being exactly identical. Most importantly, the
minimum of all three estimates of the true loss are in accordance with the loss com-
puted over the independent test set. Note that the loss is a smooth function of the
hyper-parameters and so is well suited to automated model selection using stan-
dard non-linear optimisation methods. Figure 3 shows the exact and approximate
leave-one-out cross-entropy loss as a function of each of the hyper-parameters,
holding the other constant at its optimal value. The approximate leave-one-out es-
timator is clearly of sufficient accuracy for model selection purposes, but would
not be suitable for performance evaluation, except for well-tuned models. Note
also that cross-validation based model selection criteria are not necessarily uni-
modal.

Next, we present experimental results demonstrating the accuracy and effi-
ciency of the proposed approximate leave-one-out cross-validation model selec-
tion procedure for kernel logistic regression. Table 1 shows a comparison of the
error rates of kernel logistic regression, using the proposed approximate leave-one-
out cross-validation based model selection process, and a variety of other state-of-
the-art statistical pattern recognition algorithms over the suite of thirteen public
domain benchmark datasets used in the study by [28]. The same set of 100 ran-
dom partitions of the data (20 in the case of the image and splice benchmarks)
to form training and test sets used in that study are also used here. In the case
of the LOO-KLR, KLR, EP-GPC and LOO-KFD algorithms, model selection is
performed independently for each realisation of the dataset, such that the standard
errors reflect the variability of both the training algorithm and the model selection
procedure with changes in the sampling of the data. For the LOO-KLR and KLR
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methods, model selection was performed via the Nelder-Mead simplex algorithm
[32]. The isotropic squared exponential (RBF) kernel is used for all kernel learning
methods, including the L-GPC and EP-GPC, chosen due to their state-of-the-art
performance and similar structure.

Table 2 shows the model selection time for leave-one-out and 10-fold cross-
validation based kernel logistic regression (LOO-KLR and KLR respectively) and
expectation propagation and Laplace approximation based Gaussian process clas-
sifiers (EP-GPC and L-GPC). Table 3 shows the average amount of information
about the test set labels in excess of predictions based on the prior class frequen-
cies,

I = 1+
1
n

n

∑
i=1

ti log2 yi +(1− ti) log2(1− yi)

where n is the number of test patterns. This statistic provides a measure of the
accuracy of the predictions of a-posteriori probability obtained from a model (note
that it is closely related to the cross-entropy).

The use of multiple training/test partitions allows an estimate of the statistical
significance of differences in performance between algorithms to be computed. Let
x̂ and ŷ represent the means of the performance statistic for a pair of competing
algorithms, and ex and ey the corresponding standard errors, then the z statistic is
computed as

z =
ŷ− x̂√
e2

x + e2
y

.

The z-score can then be converted to a significance level via the normal cumu-
lative distribution function, such that z = 1.64 corresponds to a 95% significance
level. All statements of statistical significance in the remainder of this section refer
to a 95% level of significance. Comparison of leave-one-out and 10-fold cross-
validation based model selection strategies for kernel logistic regression reveals
that the performance of both model selection strategies are very similar in terms of
mean error rate. None of the differences in mean error rate for the two algorithms,
shown in Table 1, are statistically significant at the 95% level. The estimates of a-
posteriori probability obtained using these approaches are generally very similar,
with k-fold cross-validation being statistically superior on only two benchmarks
(BANANA and TITANIC). The kernel Fisher discriminant classifier appears to per-
form better than KLR or GPC models in terms of error rate, however it should be
noted that the KFD classifier does not attempt to estimate the conditional proba-
bility of class membership, and so has an easier learning task, that concentrates
more strongly on the decision boundary. Table 2 also shows that the approximate
leave-one-out cross-validation based model selection is significantly less expen-
sive, being approximately five times faster than the 10-fold cross-validation based
approach, even though the latter had been extensively optimised (e.g. to prevent
redundant evaluation of the kernel matrix). The computational complexity of the
L-GPC, EP-GPC, KLR and LOO-KLR procedures are all O(`3) operations (being
dominated by the cost of fitting the initial model), so the model selection times
essentially differ only by a constant factor for a given dataset.
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The Gaussian process classifier, based on the expectation propagation algo-
rithm (EP-GPC) with hyper-parameters selected so as to maximise the marginal
likelihood, represents the state-of-the-art model having the same basic structure
and design goals as kernel logistic regression (see e.g. [34]). The EP-GPC there-
fore provides a stern test of the proposed model selection algorithm. The Gaus-
sian process classifier based on the Laplace approximation (L-GPC) is also rele-
vant; like the LOO-KLR, it also adopts a model selection criterion, in this case
the marginal likelihood, based on a quadratic approximation of the loss. The L-
GPC provides very similar results, but with much lower computational expense.
Table 1 shows the performance of LOO-KLR and EP-GPC to be generally com-
parable, in terms of error rate, with neither method dominating over all bench-
marks. LOO-KLR is statistically superior to the EP-GPC on three benchmark
datasets (RINGNORM, TWONORM and WAVEFORM) and statistically inferior on
two (BANANA and IMAGE). In terms of predictive information (Table 3) again
neither method uniformly dominates, with EP-GPC being statistically superior on
three benchmarks (BANANA, THYROID and TITANIC) and statistically inferior
on four (RINGNORM, SPLICE, TWONORM and WAVEFORM). This is a surprising
result as the EP-GPC moderates the output by marginalising over the posterior
distribution of the model parameters, and therefore might be expected to produce
more accurate estimates of the a-posteriori probability of class membership. How-
ever, the model selection criterion for the GPC models gives the probability of the
data, given the assumptions of the model [34]. Cross-validation based approaches,
on the other hand, provide an estimate of generalisation performance that does
not depend on the model assumptions, and so may be more robust against model
mis-specification [48]. The results suggests the performance of the LOO-KLR al-
gorithm is at least on a par with the EP-GPC in terms of generalisation perfor-
mance, whilst being typically 20 times faster. Note that the LOO-KLR model is
also consistently faster than the L-GPC.

5 Conclusions

Model selection is an important step in practical applications of kernel learning
methods, and must be performed in a diligent manner in order to obtain near-
optimal generalisation performance. In this paper we have proposed a close ap-
proximation of the leave-one-out cross-validation procedure for kernel logistic
regression, which can be performed efficiently in closed form, providing a con-
venient means for automated model selection. An extensive experimental com-
parison has shown this method to be competitive in terms of performance with
conventional k-fold cross-validation based model selection and with state-of-the-
art Bayesian model selection principles, embodied by the expectation propagation
based Gaussian process classifier. The proposed model selection technique is also
demonstrated to be significantly faster than either of the alternative approaches in-
vestigated. The approach can easily be adapted to form efficient model selection
procedures for a wide range of other kernel learning methods, for instance for use
in survival analysis (e.g. [12]). A public domain MATLAB implementation of the
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Table 2 Model selection time for kernel logistic regression models with leave-one-out
and 10-fold cross-validation based model selection (LOO-KLR and KLR respectively) and
Gaussian process classifiers based on the Laplace approximation and expectation propaga-
tion (L-GPC and EP-GPC respectively) over thirteen benchmark datasets.

Dataset
Selection Time (seconds)

LOO-KLR KLR L-GPC EP-GPC

Banana 37.5 ± 1.231 199.1 ± 7.995 44.6 ± 0.587 916.9 ± 20.51

Breast cancer 5.4 ± 0.210 28.7 ± 1.030 16.0 ± 0.269 126.2 ± 1.919

Diabetes 37.9 ± 0.939 201.9 ± 5.803 111.5 ± 1.746 1129.2 ± 22.10

Flare solar 90.1 ± 4.703 429.6 ± 22.33 273.7 ± 3.610 3108.9 ± 75.08

German 99.5 ± 2.687 531.8 ± 12.03 566.9 ± 6.853 3760.4 ± 67.04

Heart 3.1 ± 0.092 18.2 ± 0.645 18.5 ± 0.227 116.6 ± 2.177

Image 832.6 ± 94.82 4537.5 ± 168.0 3643.6 ± 378.3 25764.9 ± 2314

Ringnorm 60.9 ± 1.948 359.9 ± 6.555 216.8 ± 3.825 1544.7 ± 43.35

Splice 237.4 ± 10.84 1325.7 ± 74.08 4054.2 ± 122.72 12653.7 ± 1480

Thyroid 5.2 ± 0.348 21.6 ± 0.839 9.0 ± 0.278 133.4 ± 4.049

Titanic 3.3 ± 0.192 11.5 ± 0.447 5.1 ± 0.053 83.8 ± 2.669

Twonorm 46.7 ± 1.218 270.0 ± 7.240 245.6 ± 3.722 1302.0 ± 45.05

Waveform 46.5 ± 0.998 260.2 ± 6.509 222.0 ± 2.263 1145.2 ± 35.38

efficient approximate leave-one-out procedure described in this paper is available
from http://theoval.cmp.uea.ac.uk/∼gcc/projects/gkm/.
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A Alternate Derivation of the Approximation Leave-One-Out Criterion

Adapting the approach of Chapelle [13], we consider a generalised kernel machine
without an unregularised bias parameter, such that

f{yi}= zi =
`

∑
j=1

α̃ jK (x j,xi),

where the vector of dual model parameters, α̃ , minimizes the regularised training
criterion (3) over the full set of training samples. In each iteration of the leave-one-
out procedure (for notational convenience we consider the `th), we must find a set
of model parameters, α̂ , minimising a reduced training criterion,

Ê =
1
2

α
T Kα + γ

`−1

∑
i=1

c(yi, ti)

However, a useful approximation can be found by taking only a single Newton
step of the reduced criterion, Ê, starting from the optimal parameters for the full
training set, α̃ , without iterating to convergence, i.e.

α̂ ≈ ᾱ = α̃− Ĥ−1
∇̂,

where H and ∇ represent the Hessian matrix and gradient vector of the reduced
training criterion evaluated at α̃ , given by

Ĥ = K + γKD̂K where D̂ = diag

{
∂ 2c1

∂ z2
1

,
∂ 2c2

∂ z2
2

, . . . ,
∂c2

`−1

∂ z2
`−1

,0

}
and

∇̂ = K (α̃ + γ ĝ) where ĝ =
(

∂c1

∂ z1
,

∂c2

∂ z2
, . . . ,

∂c`−1

∂ z`−1
,0
)

.

However, as α̃ is the minimiser of the original training criterion, we know that

∂E
∂α

∣∣∣∣
α=α̃

= K(α̃ + γg) = 0 where g =
(

∂ci

∂ zi

)`

i=1
,

and thus α̃i + γgi = 0 = α̃i + γ ĝi, ∀ i 6= `, such that

∇̂ = K
(

0
α̃`

)
.
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Noting that D̂`` = 0, the Newton step is then given by

ᾱ− α̃ =−Ĥ−1
∇̂ = −

[
K + γKD̂K

]−1 K
(

0
α̃`

)
= −

[
I + γD̂1K1 γD̂1k

0T 1

]−1( 0
α̃`

)
,

where

K =
[

K1 k
kT K``

]
, D̂ =

[
D̂1 0
0T D̂``

]
and B1 = D̂−1

1 .

Using block matrix inversion lemma (19) we can re-write the Newton step as fol-
lows,

Ĥ−1
∇̂ =

[ [
I + γD̂1K1

]−1 −
[
I + γD̂1K1

]−1
γD̂1k

0T 1

](
0
α̃`

)

=

(
−
[
γ−1D̂−1

1 +K1

]−1
k

1

)
α̃`

The output of the kernel machine in the `th fold of the leave-one-out cross-validation
procedure is then approximated by

z̃(−`) ≈ z̄(−`) = Kα̃−KĤ−1
∇̂

= z̃−
(

K1 k
kT K``

)(
−
[
γ−1D̂−1

1 +K1

]−1
k

1

)
α`

= z̃+

 K1

[
γ−1D̂−1

1 +K1

]−1
k− k

kT
[
γ−1D̂−1

1 +K1

]−1
k−K``

α`

The approximation to the `th output in the `th iteration of the procedure is then

z̃(−`)
` ≈ z̄(−`)

` = z̃`−

(
K``− kT

[
B1

γ
+K1

]−1

k

)
α`. (21)

As a by-product of training the kernel machine on the full training sample, we have
already evaluated

C−1 =

[
K1 + B1

γ
k

kT K`` + 1
γβ`

]−1

Using the block matrix inversion lemma (19), the bottom right element of C−1 is
given by

C−1
`` = K`` +

1
γβ`

− kT
[

B1

γ
+K1

]−1

k,
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substituting this into equation (21), we obtain

z̄(−`)
` = z̃`−

[
1

C−1
``

− 1
γβ`

]
α̃`.

Finally, noting that the training samples are interchangeable and substituting equa-
tions (10) and (11),

z̄(−i)
i = ηi−

α̃i

C−1
ii

,

which is identical to the result given in equation (20).

B Analytic Approximation of Gradient Information

Let Θ = {γ,θ1, . . . ,θd} represent the set of hyper-parameters for a kernel logis-
tic regression model. Near-optimal values for these hyper-parameters are chosen
by minimising an approximate leave-one-out cross-validation estimate of the true
cross-entropy loss, i.e.

P(Θ) =−
`

∑
i=1

[
ti log

{
p(−i)

i

}
+(1− ti) log

{
1− p(−i)

i

}]
, (22)

where
p(−i)

i =
1

1+ exp
{
−ẑ(−i)

i

} and ẑ(−i) = ηi−
αi

C−1
ii

.

In order to implement an efficient gradient descent model selection procedure, we
require the partial derivatives of P(Θ) with respect to the hyper-parameters. The
coefficients of the quadratic approximation of the regularised loss, η and β , Using
the chain rule, we obtain,

P(Θ)
∂θi

=−
`

∑
j=1

∂P(Θ)

∂ ẑ(− j)
j

∂ ẑ(− j)
j

∂θi

where

∂P(Θ)

∂ ẑ(− j)
j

= p(− j)
j − t j and

∂ ẑ(− j)
j

∂θi
=

α j[
C−1

j j

]2

∂C−1
j j

∂θ j
− 1

C−1
j j

∂α j

∂θi
,

such that

P(Θ)
∂θi

=
`

∑
j=1

∂P(Θ)

∂ ẑ(− j)
j

1
C−1

j j

∂α j

∂θi
,−

`

∑
j=1

∂P(Θ)

∂ ẑ(− j)
j

α j[
C−1

j j

]2

∂C−1
j j

∂θ j
(23)

The parameters of a kernel logistic regression model, [αT , b]T , are given by a
system of linear equations, [

α
T b
]T = C−1 [

η
T 0
]T

.
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Using the following identity for the derivatives of the inverse of a matrix,

∂C−1

∂θi
=−C−1 ∂C

∂θi
C−1 (24)

we obtain

∂
[
αT b

]T
∂θi

=−C−1 ∂C
∂θi

C−1 [
η

T 0
]T =−C−1 C

∂θi

[
α

T b
]T

. (25)

The partial derivatives of C with respect to the regularisation parameter, γ , and a
kernel parameter, θi, are given by

∂C
∂γ

=
[

B 0
0T 0

]
and

∂C
∂θi

=
[

∂K/∂θi 0
0T 0

]
,

respectively. As (25) involves two matrix-vector products, the partial derivatives of
the model parameters, and therefore the first summation in (23), can be computed
with a complexity of O(`2) operations per hyper-parameter. The second summa-
tion can be written as

−
`

∑
j=1

∂P(Θ)

∂ ẑ(− j)
j

α j[
C−1

j j

]2

∂C−1
j j

∂θ j
= Trace

{
C−1 ∂C

∂θi
C−1D

}
where

D = diag

∂P(Θ)

∂ ẑ(− j)
j

α j[
C−1

j j

]2

 .

Noting that Trace(ABAD) = Trace(ADAB) and defining M = C−1DC−1, where D
is diagonal, we have

−
`

∑
j=1

∂P(Θ)

∂ ẑ(− j)
j

α j[
C−1

j j

]2

∂C−1
j j

∂θ j
= Trace

{
M

∂C
∂θi

}
(26)

Therefore, provided we pre-compute M, then the partial derivatives of the model
selection criterion with respect to all of the kernel hyper-parameters can be evalu-
ated with a computational complexity of only O(`3 +d`2) operations. There exist
a great variety of kernel functions, however for this study we adopt the isotropic
Gaussian radial basis function kernel (1), for which the partial derivatives are given
by

∂K (x,x′)
∂θ1

=−K (x,x′)‖x− x′‖2. (27)

Since the regularisation parameter, γ , and the scale parameters of a radial basis
function kernel are strictly positive quantities, in order to permit the use of an
unconstrained optimisation procedure, we might adopt the parameterisation θ̃i =
log2 θi, such that

∂P(Θ)

∂ θ̃i
=

∂P(Θ)
∂θi

∂θi

∂ θ̃i
where

∂θi

∂ θ̃i
= θi log2. (28)
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