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ABSTRACT

Previous research (e.g. Cawley [1, 2]) has demonstrated that arti�cial neural networks can be trained
to generate the speech sounds corresponding to a sequence of phonetic tokens, including the e�ects of
coarticulation required to produce natural sounding synthetic speech. The principal limiting factor in the
performance of neural speech synthesizers has been found to lie in the amount of training data available.
This paper presents the initial results of an investigation to determine the amount of training data required
to reach optimal generalization in neural speech synthesizers, through an empirical exploration of the e�ects
of the number of training patterns on test set error.

1. INTRODUCTION

Speech is produced as the result of a coordinated sequence of movements of the articulators, such as the lips,
tongue and jaw. For a given language, there exists a set of elementary linguistic units, known as phonemes.
The elementary acoustic unit of speech is the allophone, a symbolic representation of a number of subtly
di�erent speech sounds corresponding to a given phoneme. For example, the light l in \lemur" and the
dark, or syllabic l in \eel" are both allophones of the phoneme l. The acoustic realization of an allophone
in continuous human speech, referred to as a phone, varies greatly according to phonetic context. This is
partly due to the physical inertia of the articulators themselves, and partly due to cognitive processes that
seek to minimize the articulatory e�ort required to achieve error free communication. The sources of these
variations are described by three terms:

� Assimilation is the process by which an allophone partially acquires the acoustic properties of
adjacent speech sounds, to prevent the undue vocal e�ort required to articulate each sound distinctly.

� Reduction occurs when the principal articulator is unable to move with su�cient speed, without
undue articulatory e�ort, and so undershoots its target position.

� Coarticulation describes the simultaneous movement of two, or more, articulators. This word is
also used as a blanket term to describe the general merging of speech sounds in continuous human
speech.
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While coarticulation is often assumed to be local to the immediate phonetic context, in some cases the
e�ects can extend much further. For example in the phrase \the toucan", the lip rounding gesture required
to produce the initial vowel sound in \toucan" can even cross a word boundary to occur during the
articulation of the word \the". Coarticulatory e�ects carry little of the semantic meaning of an utterance.
However, the human auditory system has adapted to expect these variations to be present in natural
speech. As a result, synthetic speech where this variation is absent or inadequately modelled sounds stilted
and unnatural. There are two basic approaches to speech synthesis, concatenative synthesis and synthesis
by rule, that adopt di�erent models to account for the e�ects of coarticulation.

1.1 Concatenative Speech Synthesis

Concatenative speech synthesis systems simply concatenate short, pre-recorded speech sounds to form
the required utterance. The most frequently used speech unit is the diphone, consisting of the second
half of an allophone and the �rst half of the subsequent allophone. The diphone captures the e�ects of
coarticulation in the transition between the two allophones, and abut during the relatively steady state
conditions in the middle of each allophone, so that the joins between diphones are less noticeable. Modern
concatenative synthesizers, for instance B.T.'s Laureate system (Page and Breen [3]), often incorporate
time domain algorithms to smooth the boundaries between diphones and to modify the duration and pitch
of each allophone to model prosodic e�ects (e.g. Moulines and Charpentier [4]). Adding a new voice
to a concatenative synthesizer requires a phonetically transcribed speech corpus, of su�cient size and
diversity to form an adequate inventory of diphones. The phonetic transcription process has normally been
performed manually. However, completely automated training of concatenative synthesizers may soon be
practical, due to advances in automatic alignment techniques.

1.2 Speech Synthesis by Rule

Nominal boundary between segments

1350 Hz
Boundary value

750 Hz

[w] target

2000 Hz

[e] target

10 frames

4 frames

Figure 1: Second formant transition for the sequence we, using the Holmes-MattinglyShearme algorithm.
After Holmes [5].

Speech synthesis by rule systems incorporate a model of coarticulation based on the interpolation of formant
parameters, according to a �xed template, for example the Holmes-Mattingly-Shearme (HMS) algorithm
(Holmes et al. [6]) employed in the Joint Speech Research Unit (JSRU) synthesizer (Lewis [7]), as shown
in �gure 1. Tables are compiled containing interpolation parameters for each speech parameter, for each
allophone. A large set of context sensitive rules may also be necessary to achieve acceptable speech
quality. The compilation of tabulated interpolation parameters and rule base involves extensive manual
comparison of human and synthetic speech spectra. As a result revoicing a speech synthesis by rule system
is an expensive operation.
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1.3 Neural Speech Synthesis

As coarticulation is largely the result of the physical and cognitive processes, it seems sensible to suggest
that the speech sounds associated with a given allophone will vary with phonetic and prosodic context in a
systematic, generalizable manner. The arti�cial neural network has been demonstrated to have the ability
to generalize knowledge extracted from a set of representative examples. The use of neural networks in
speech synthesis has been investigated independently by a number of researchers (e.g. Cawley [2], Teurk et

al. [8, 9], Scordilis and Gowdy [10] and Karaali et al. [11]). It is hoped that neural models of coarticulation
can be trained without the extensive manual e�ort required to voice a synthesis by rule system, but without
incurring the high storage requirements of concatenative synthesizers.

the remainder of this paper is organized as follows: Section 2. describes the implementation of neural
speech synthesizers and describes the method used to estimate the amount of training data required to
reach optimal generalization. Section 3. presents initial results obtained for a single allophone h, and
section 4. concludes.

2. METHOD

Figure 2 shows the basic neural architecture employed in this research. The input layer of the network
contains three groups of neurons representing the current and left and right context allophones, according
to a vector of articulatory and prosodic features. The input layer forms a \sliding window", similar to
that used in the Net Talk system (Sejnowski and Rosenberg [12]), over a stream of phonetic symbols
corresponding to the desired utterance. The phonetic symbols move from left to right across the window,
at each step the network generates an appropriate sequence of speech parameters to synthesize the current
allophone, including the e�ects of coarticulation consistent with the immediate phonetic context. In order
to generate the sequence of speech parameters, �rst the appropriate pattern of activation is applied to
the three groups of neurons corresponding to the current and context allophones. A continuous value,
representing the normalized duration of the current allophone is applied to the allophone duration input
neuron, and a ramp input applied to the time index neuron. The network is trained so that as the input
to the time index neuron steadily increases, the output units trace out the appropriate sequence of speech
parameters. A discussion of the interpolation properties of these networks can be found in Cawley [2].

The most direct method to determine the optimal size of the training set, and the approach adopted here,
is simply to train a large number of neural speech synthesizers with training sets of di�erent sizes and to
record the minimum root-mean-square error over a test data set achieved by each network. A scatter plot
of the resulting data, against the size of the training set could be expected to have an exponential decay
characteristic, as shown in �gure 3. Clearly a network trained with a very small data set is unlikely to
generalize well as the training set is unlikely to provide adequate coverage of the sounds corresponding to
an allophone in a range of di�erent phonetic contexts. The rate at which the generalization error is reduced
will fall as training set grows in size. This is because a new pattern introduced into a large data set is less
likely to be di�erent to an existing pattern than for a new pattern introduced to a small data set. This
suggests an exponential decay in test set error as the size of the training set increases.

If the exponential curve exhibits signi�cant downward slope for networks trained on large data sets this
suggests that the data set is too small, and a useful improvement in test set error might result if more
training patterns were available. Conversely if the exponential curve rapidly becomes near horizontal, the
neural network generalizes well given only a small sample of the available data, and so the data set too
large in the sense that unnecessary e�ort was expended in its collection. Ideally the curve should display
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Figure 2: Basic neural architecture employed in this research.

steady reduction in test set error, leveling o� only as the proportion of patterns used to form the training
set approaches 90%. This would imply that the neural network is able to extract all of the generalizable
information from the training set, but that adding further training patterns would have little e�ect on the
test set error.

3. RESULTS

A pitch synchronous, twelfth order line spectral pair analysis (Sugamura and Itakura [13]) was �rst per-
formed on a corpus of some 230 phonetically balanced sentences (approximately 10000 phonemes) of English
speech, spoken by a male speaker with a received pronunciation accent. The resulting data were then par-
titioned to form a data set representing each allophone. A separate neural network was then trained on
each data set. Previous experiments indicated a hidden layer of 16 neurons to be more than su�cient for
networks trained on 90% of the data, larger numbers of hidden units providing only a minimal improvement
in test set error. One hundred trials were performed for each data set, using between 10% and 90% of
the available patterns to form the training set. In each case, the remaining patterns were used to form a
test set. It should be noted that if the training set is large, fewer patterns will be left to form the test
set. This implies that the measure of generalization will be much less reliable for networks trained using
large training sets. A small data set may not be su�ciently large to be statistically representative of the
underlying distribution and will also be sensitive to outliers or artifacts introduced by the random partition
of the data between test and training sets. We should therefore expect to see much greater variance in the
test set error for networks trained with large training sets than those trained with small training sets (and
therefore a more substantial test set).

The neural networks were trained using an implementation of the back propagation algorithm (Rumelhart
et al. [14]), written in the C programming language using the Parallel Virtual Machine (PVM) package [15],
running in parallel on a network of 10 Linux workstations. Figure 4 shows a scatter plot of root-mean-
square test set error for a neural network trained to produce the allophone h in di�erent phonetic contexts,
trained using between 10% and 90% of the 163 examples of this phoneme contained in the speech corpus.
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Figure 3: Expected exponential decay characteristic for scatter plots of root-mean-square error over the
test set against the proportion of the available patterns used to form the training set.

A model of the observed exponential reduction in test set error with increasing size of the training set is
also shown. A model of the form

y = A+BeCx

is used, where and A;B; and C are constants found using a least squares optimisation procedure. Table 1
shows the coe�cients obtained for the allophone h. The expected exponential decay characteristic of the
scatter plot is clearly evident. It can be seen that the slope of the graph still decreases signi�cantly for
large training sets, suggesting that while the corpus used approaches the optimal size for a neural network
with 16 hidden layer units, a larger corpus may yield an improvement in generalization. As expected, the
variability of the test set error when large training sets are used (80{90% of the available patterns) is very
high, as fewer patterns are available to form the test set.

Coe�cient Value

A 0.0895844
B 0.0563094
C 0.0305952

Table 1: Coe�cients obtained for an exponential model of test set error against the proportion of patterns
used to form the training set for the allophone h.

4. CONCLUSIONS AND FURTHER WORK

At the time of writing only results for a single allophone (h) are available. These results suggest, for at
least this allophone, that while the corpus used in this research is su�cient to obtain meaningful results,
neural speech synthesis systems may bene�t from a somewhat larger speech database. It should be noted
that the multi-layer perceptrons used in this research contained a hidden layer consisting of a relatively
small number of units. Clearly in order to reliably estimate the amount of generalizable information that
can be extracted from the corpus, either a very large hidden layer in conjunction with regularization, or a
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Figure 4: Scatter plot of test set root-mean-square error against the proportion of available patterns used
to form the training set, for the allophone h.

constructive training algorithm, should be used, to ensure that hidden layer size is not a limiting factor in
minimizing test set error.
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