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Abstract

Clostridium botulinumis a bacterium present in the raw
ingredients of many foods. It produces a powerful neuro-
toxin as part of its growth process, that can prove fatal when
doses as small as a few micrograms are consumed. It is
therefore vital to be able to accurately determine the food
processing and storage conditions where toxin production is
prevented. This paper describes a new model of the effect of
heat treatment and subsequent incubation temperature on
time to toxin production by non-proteolyticC. botulinum.
A multi-layer perceptron network is trained, using a cross-
entropy error metric, to estimate thea posterioriprobability
of toxin production given the heat treatment applied and in-
cubation time and temperature. The results obtained com-
pare favourably with those obtained using a conventional
model based on a quadratic response surface.

1. Introduction

Clostridium botulinumis an anaerobic bacterium that
produces one of the most powerful toxins known to science
as a by-product of its growth processes. Ingestion of only a
few micrograms of the toxin can result in severe illness and
even death. It is therefore vital that steps should be taken to
ensure that the toxin is not present in food. AsC. botulinum
spores are ubiquitous in raw ingredients, food must be pro-
cessed to ensure that all of these spores are destroyed, or so
that the spores are prevented from germinating, leading to
cell division and subsequent toxin production. Growth of
C. botulinumis, in most cases, principally dependent on en-
vironmental factors such as temperature, pH, NaCl concen-
tration and gas atmosphere. It is important then to be able to
define the conditions under which the spores are prevented
from germinating, and giving rise to toxin production. This

is especially true in the case of minimally processed chilled
foods, as non-proteolytic strains ofC. botulinumare capable
of growth and toxin production at chill temperatures. The
safety of these foods with respect to non-proteolyticC. bo-
tulinum is likely to rely on a combination of heat treatment
and subsequent incubation at low temperatures (Lund and
Notermans [8], Peck [10].

This paper describes a neural model of toxin produc-
tion by C. botulinumin a meat-based medium containing
lysozyme, following a range of heat treatments. The net-
work is trained, using the backpropagation algorithm with a
cross-entropy error metric, to estimate thea posterioriprob-
ability of toxin production, given inputs describing the heat
treatment applied and incubation conditions. The cumu-
lative density function encoded within the neural network
provides an improvement over a more conventional model
based on a quadratic response surface.

The remainder of the paper is structured as follows: Sec-
tions 2 and 3 describe the data set, collected by the Institute
of Food Research, and a conventional growth model based
on quadratic response surface. The proposed neural model
is described in section 4 and the results of initial experi-
ments are presented in section 5. Section 6 discusses the
conclusions drawn from the results of our initial research
and suggests avenues for further work.

2. The Dataset

The neural model of toxin production inC. botulinum
described here is based on the dataset described in
Fernández and Peck [5]. Tubes containing a sterile meat-
based medium containing lysozyme, an enzyme found to
increase the measured heat resistance of spores of non-
proteolyticC. botulinum(Lund and Peck [9], Peck [10]),
were inoculated with a suspension of the spores of eight
strains of non-proteolyticC. botulinum, at a final concentra-



Table 1. Heat treatments applied to a meat-
based medium containing spores of C. bo-
tulinum

Temperature (�C) Duration (min)

70�C 104.9 529.1 998.9
1596.3 2065.9 2544.5

75�C 284.6 463.1 734.2
1071.5 1376.5 1793.0

80�C 11.4 69.7 98.0
127.9 183.8 229.6
294.9 362.7

85�C 23.3 35.7 52.0
57.8 83.8

90�C 10.3 10.9 15.3
23.5 33.5

tion of 106 spores per tube, and subjected to a range of heat
treatments, shown in table 1. The tubes were then cooled
and incubated at temperatures of 5, 8, 12, 16 and25�C for
90 days. Five replicates were performed at each incuba-
tion temperature, for each heat treatment regime. The tubes
were inspected every 2–3 days for signs of growth, indi-
cated by obvious formation of gas. At the end of the ex-
periment, samples from each heat treatment regime, show-
ing growth at the lowest incubation temperature and for the
highest incubation temperature that did not show growth,
were tested for toxin (Pecket al.[11], Potteret al.[12], Car-
lin and Peck [4]). This type of dataset is known astime to
growthdata, as the results are presented in terms of a table
showing the number of days after which each tube showed
signs of growth. Full details of the experimental method are
recorded in Fern´andez and Peck [5].

3. Modelling of Time to Growth Data Using a
Response Surface

The effects of environmental conditions on the growth
of microbial populations are frequently modelled using a
quadratic response surface. For a system with two indepen-
dent variablesx1 andx2, a quadratic response surface is
represented by a polynomial of the form:

y = c1 + c2x1 + c3x2 + c4x
2

1
+ c5x

2

2
+ c6x1x2

wherey is the parameter of the system being modelled, and
c1; c2; : : : ; c6 are coefficients to be determined, using a least
squares optimisation procedure. Fern´andez and Peck [5] de-
scribe the use of a tri-quadratic response surface to model
the natural logarithm of the time to the first observation of
growth (y) in the five replicates performed for each heat

treatment regime at each incubation temperature. The coef-
ficients obtained for the second order polynomial were

loge y = 0:0037I2 � 0:0056H2
� 0:00000015t2

� 0:000014tI + 0:0002Ht+ 0:0005HI

� 0:2748I + 1:0054H � 0:0119t

� 39:14

whereH is the heating temperature,t is the heating time
andI is the incubation temperature. While a model of this
type clearly provides a useful tool in ensuring food safety,
there remain areas where improvements may be made:

� The experimental data are not fully utilised; only the
time to first growth for each heat treatment regime,
at each incubation temperature, is used to form the
model.

� It is difficult to place a statistical interpretation of the
output of the model. As the model is not based on an
estimate of the underlying distribution of the data, it
is difficult to quantify the risk of growth earlier than
predicted by the model.

� Growth is observed in the experimental data earlier, in
some cases, than is predicted by the model.

The food manufacturer requires a model that provides an
indication that a given heat treatment is sufficient to en-
sure the safety of the consumer, over the expected range of
storage conditions. A model of the distribution of the time
to growth, based on all of the experimental observations,
would allow theprobability of growth and therefore toxin
production to be estimated, for a given heat treatment and
incubation temperature. This would clearly provide a more
useful resource in risk analysis, as it would then be possible
to establish the conditions where growth will not occur, at
a well defined confidence level. The remaining sections of
this paper describe the use of artificial neural networks to
construct a model of this type.

4. Modelling of Time to Growth Data Using an
Artificial Neural Network

It has been shown that the outputs of classifiers based on
the multi-layer perceptron can be regarded as estimates of
Bayesiana posterioriprobabilities, given a suitable combi-
nation of output coding method, activation function and er-
ror metric (Baum and Wilczec [1], Bridle [3], Richard and
Lippmann [13], Hampshire and Pearlmutter [6]). This sec-
tion describes the construction of a model, based on this
property of artificial neural networks, of the probability of
growth from spores, and hence toxin production, of non-
proteolyticC. botulinumfollowing heat treatment and sub-
sequent incubation at chill temperatures.
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Figure 1. Architecture of the proposed model
of time to growth data based on a multi-layer
perceptron.

Figure 1 shows a schematic diagram of the proposed
model of the dataset described in section 2, based on a
multi-layer perceptron. The input layer consists of four neu-
rons, representing the temperature (Tht) and duration (tht)
of the heat treatment, the incubation temperature (Ti) and
incubation time (ti). Each input is first standardised (i.e.
linearly rescaled) to have a zero mean and unit variance,
as this simplifies weight initialisation (Bishop [2]) and can
have a beneficial effect on training time (Sarle [16]). For
initial experiments a hidden layer of sixteen neurons, with
symmetric logistic sigmoidal activation functions (Stornetta
and Huberman [18]), was deemed to be appropriate, given
the size and apparent complexity of the dataset. The output
layer consists of a single neuron, with an assymetric logis-
tic activation function, trained to estimate thea posteriori
probability of growth, using the backpropagation algorithm
(Rumelhartet al. [14]).

The interpretation of the output of a neural network as
an a posterioriprobability holds for a wide range of error
functions, including the standard squared error and cross
entropy (Hinton [7]) metrics. The cross entropy,C, is given
by:

C = �

X

j;p

tj;p log2(oj;p) + (1� tj;c) log2(1� oj;p)

wheretj;c is the target output for unitj for patternp and
oj;p is the output of the network for patternp. As we
are principally interested in defining the conditions under
which growth is unlikely, the cross-entropy error metric was

considered most appropriate for this application, because it
places a greater emphasis on errors for probabilities close to
zero.

Before training, the weights were initialised to small ran-
dom values between�0:3 and0:3. A simple early stopping
procedure was employed to prevent over-fitting of the train-
ing data (Sarle [15]). As only a limited amount of train-
ing data was available, a ten-fold cross-validation scheme
was then used to estimate the true accuracy of the model
(Stone [17]).

5. Results Obtained Using a Neural Model of
Time to Growth Data

Figure 2 shows a graph of the average root mean square
error against cycles trained, for the ten neural time to growth
models generated by the cross-validation procedure, over
both the training and validation data. The models are seen
to converge slowly, with little indication of overfitting.
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Figure 2. Graph of the average root mean
square error against cycles trained, for ten
neural time to growth models, over both the
training and validation datasets.

Figure 3 shows a contour plot of a cumulative density
function (C.D.F.), generated by the neural time-to-growth
model, of the probability of growth against incubation tem-
perature and incubation time, following heat treatment at a
temperature of 75�C for 463 minutes. The C.D.F. seems
well in agreement with the experimental data obtained for
this heat treatment schedule, denoted by circles in figure 3.
In general, C.D.F.s generated by the neural network are
smooth, monotonic functions, and appear to be subjectively
reasonable interpolations of the experimental data.
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Figure 3. Contour plot of the cumulative den-
sity function for growth of non-proteolytic
strains of C. botulinum , in a meat-based
medium containing lysozyme, following heat
treatment at 75 �C for 463 minutes and sub-
sequent incubation at 5–25 �C. The circles de-
note experimental observations of growth (no
growth was observed for incubation temper-
atures of 5 and 8 �C for this heat treatment).

6. Conclusions and Further Work

The accuracy with whicha posterioriprobabilities are
estimated by the outputs of multi-layer perceptron classi-
fiers depends on two principal factors [13]:

� Complexity of the neural network - the multi-layer
perceptron must be sufficiently complex to represent
the form of the statistical distribution of the data. Fur-
ther experimentation is required to determine the opti-
mal network size for this dataset.

� Adequacy of the data set- the dataset must be repre-
sentative of the underlying statistical distribution. It is
not clear at the current time that the existing data set
is sufficiently large to be able to estimate thea poste-
riori probability of growth accurately. A larger dataset
would allow research to be conducted into the amount
of data required to form statistical models of this type.

Modelling the growth, survival and death of populations
of various microbial organisms is a common task in food
safety research. There is scope, therefore to apply profitably
the methods described in this paper to a number of related
datasets in this field.
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