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Abstract

Our previous work has indicated that multi-
layer perceptrons (MLPs) trained using the
backpropagation (BP) algorithm, have great dif-
ficulty in learning continuous mappings with
sufficient accuracy for speech synthesis. The
use of vector quantization allows networks to be
trained to select a sequence of entries from a
codebook of speech parameter vectors. For the
network to be able to generalise meaningfully
some correlation must exist between codebook
vectors and the indices by which they are re-
called (otherwise the network will be attempting
to learn an essentially random mapping). This
paper describes the use of the Hamming learn-
ing vector quantizer (H-LVQ), which is used to
generate a codebook of speech vectors in which
such a correlation exists.

1 Introduction

In our previous work [?, 7, 2, 7, 7], multi-layer
perceptrons were trained using the backpropa-
gation algorithm to generate successive frames
of speech parameters corresponding to the al-
lophones comprising the utterance. Each allo-
phone is described by a vector of articulatory
features. The input layer forms a sliding win-
dow over the input, as employed in the NETtalk
system [?], and consists of three such vectors
corresponding to the current allophone and left
and right context allophones. In addition one
input neuron is used to indicate the duration
of the current allophone, and an index neuron
which indicates how much of the current allo-
phone has already been generated. During syn-
thesis a ramp is applied to the index neuron,
as the input rises the output neurons step out
the speech parameters required to synthesize
the current allophone. A number of parametric
descriptions of speech based on linear predic-

tive coding (LPC) [?] have been used in an at-
tempt to reduce the sensitivity to the inevitable
recall error. Line spectral pair representation
(LSP) [?] has been found to produce the best
results, but large training times are required to
sufficiently reduce the error on the training set,
and generalization remains poor [?, 7, ?]. This
paper describes the use of vector quantization
to replace continuous outputs which must be
learned accurately, with binary outputs which
represent indices into a codebook of speech pa-
rameters.

1.1

The vector space described by the LPC coef-
ficients obtained from the analysis of human
speech is not populated with uniform density,
but instead vectors tend to be concentrated in
clusters. Vector quantization [?] is a technique
widely used in low bit rate speech coding by
which any vector within a cluster is replaced by
a reference vector representing the centroid of
the cluster (in practice large clusters may be as-
signed more than one reference vector). A code-
book containing the centroids of cluster is stored
at both transmitter and receiver. During trans-
mission, each vector is compared with the code-
book to find the most similar reference vector,
the index of this codebook entry is then trans-
mitted, using typically 10 bits, rather than the
vector of speech parameters requiring around
50-70 bits. However, this reduction in bit rate
is achieved at the expense of a small increase in
spectral distortion.

Vector Quantization

1.1.1 Kohonen Learning Vector Quan-

tizer

The Kohonen self organising feature map can be
used to perform vector quantization [?]. Typ-
ically the Kohonen feature map consists of a
two dimensional array of linear neurons. During



training the same pattern is presented to the in-
puts of each neuron, the neuron with the great-
est output value is selected as the winner, and
its weights updated according to the following
rule:

wi(t +1) = w;(t) + nlz(t) — wi(t)]

Where: w;(t) is the weight vector of neuron i
at time ¢, 7 is the learning rate and x(t) is the
training vector.

Those neurons within a given distance, the
neighbourhood, of the winning neuron also have
their weights adjusted according to the same
rule. This procedure is repeated for each pat-
tern in the training set to complete a training
cycle or epoch. The size of the neighbourhood
is reduced as training progresses. In this way
the network generates over many cycles an or-
dered map of the input space, neurons tending
to cluster together where input vectors are clus-
tered, similar input patterns tending to excite
neurons in similar areas of the network. When
trained, the weight matrix of the network forms
a codebook of the vector space described by the
training set, which may be used for vector quan-
tization.

2 The Hamming-LVQ Algorithm

We have developed the Hamming learning vec-
tor quantizer which is a variation on the stan-
dard Kohonen LVQ algorithm. Training pat-
terns are presented and the winning neuron se-
lected as before, but the neurons comprising the
neighbourhood of the winning neuron are se-
lected according to the Hamming distance of the
neurons index rather than the manhattan dis-
tance over a two dimensional array of neurons.
This effectively realises a network arranged as
an N-dimensional hypercube with a neuron at
each vertex. When used for vector quantization
such a network produces a codebook in which
similar vectors are associated with indices which
have similar binary patterns (hence the Ham-
ming LVQ algorithm).

3 Experimental Evaluation of H-LVQ
Algorithm

To evaluate the H-LVQ algorithm, conventional
LVQ and H-LVQ networks were trained us-
ing speech vectors obtained using 10th order
LSP analysis of eight sentences taken from the

TIMIT corpus [?]. Figures 1 and 2 show graphs
of rms error and the sample cross correlation
of codebook entries and indices against cycles
trained. From these it can be seen that the H-
LVQ algorithm forms a similarly accurate map-
ping of the vector space, but creates a map or-
dered such that similar codebook vectors are re-
called by indices with similar binary patterns.
Note that the conventional LVQ network was
dimensioned so as to maximise correlation.

4  Vector Quantization in Neural

Speech Synthesis

In order for vector quantization to be used in
neural speech synthesis, a multi-layer percep-
tron is trained to recall a sequence of code-
book indices instead of generating the speech
vectors directly. The same network structure
is used as before except the output neurons
now have binary targets and it therefore has
greater tolerance to learning errors. Four net-
works were trained, each with 50 hidden layer
neurons: (i) a conventional MLP, (ii) an MLP
trained to access a randomly ordered codebook,
and MLPs trained to access codebooks gener-
ated using (iii) the LVQ and (iv) H-LVQ algo-
rithms. Figure 3 shows a graph of RMS error
against cycles trained for each network. It can
be seen that the use of vector quantization yields
better performance, at the expense of the extra
computation required to generate the codebook.
Also the codebooks which are more correlated
are shown to produce the better results.

5 Summary and Conclusions

We have shown that vector quantization can
be successfully applied to the outputs of multi-
layer perceptron networks trained using the
back propagation algorithm for speech synthe-
sis. For optimal results the codebook should be
ordered such that similar codebook vectors are
recalled by indices with similar binary patterns.
An additional benefit of vector quantization is
that the generation of a codebook requires only
raw speech vectors which are easily obtained,
unlike the time aligned phonetic transcription
required for the supervised training of the MLP.



Acknowledgements

The authors would like to acknowledge the sup-
port of the United Kingdom Science and Engi-
neering Research Council (SERC).



0.26 T

hamming ——

0.24 manhattan — — |

0.22

0.2
0.18
0.16
0.14
0.12

0.1
0.08 — B

0.06

0.04 | | | | | | |
0 100 200 300 400 500 600 700 800

Figure 1: Graph of RMS error against cycles trained for different vector quantizers



0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

Figure 2: Graph of sample cross correlation between similarity of binary indices and similarity of
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Figure 3: Graph of RMS error against cycles trained for conventional MLP and MLPs trained

using vector quantisation
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