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Abstract— The generalised linear model (GLM) is the stan- A. The Random Component

dard approach in classical statistics for regression tasks where . . .
it is appropriate to measure the data misfit using a likelihood The generalised linear model extends the standard least

drawn from the exponential family of distributions. In this ~ Sguares linear regression technique to allow the condition
paper, we apply the kernel trick to give a non-linear variant  distribution of the responses to be given by any member of
of the GLM, the generalised kernel machine (GKM), in which  exponential family. The exponential family consists of all
a regularised GLM is constructed in a fixed feature space (jstributions of the form,

implicitly defined by a Mercer kernel. The MATLAB symbolic

maths toolbox is used to automatically create a suite of gener- f(y;0,0) = exp{lyfd — b(0)]/a(d) + c(y,0)} ()
alised kernel machines, including methods for automated model

selection based on approximate leave-one-out cross-validation. for some functionsa(-), b(-) and c(-), where and ¢ are

In doing so, we provide a common framework encompassing parameters of the distribution. Many of the distributions
a wide range of existing and novel kernel learning methods, commonly encountered in statistical modelling fall wittire

and highlight their connections with earlier techniques from . . .
classical statistics. Examples including kernel ridge regression, exponential family. For example, in the case of the normal

kemel logistic regression and kemel Poisson regression are distribution

given to demonstrate the flexibility and utility of the generalised 1 (y — H)Q
kernel machine. f(y:0,6) = \/ﬁexp T opz (7 (4)
To
I. GENERALISEDLINEAR MODELS w2\,
; ¢ = P \YHT SO
Assume we are given dat® = {(z;,v:)},_,, Where

x; € X C R represents a vector of input variables 1 /2 log {270
and y; € R represent the corresponding responses. Let T 9 §+ Og{ T } ’
Y = (41,42, .- ., ye) represent the vector of responses, whichy inspection we find that it is a member of the exponential

we will assume is a realisation of a random varialié .

»  family wh = =¢? = =0?/2

the components of which are identically and independentl;?lmIy whered =, ¢ = o ’2a(¢) ¢, b(6) = 0%/2 and
distributed (i.i.d.), with means given by the vectpr = _ 1 {y loo { 9me2 }

(1, 2, ..., pe). The aim of regression is to estimate the (v, ) o2 * Og{ e } '

conditional mean of the response;, as a function of the |t can be shown that the mean of the distribution is governed

covariates,x; for i = 1,2,...,/. A generalised linear splely by thecanonical parameterp, whereas the variance
model [22, 28] consists of three components: First a randog governed by bott# and thedispersionparameterg. The
component, which describes the conditional distributién 0qg-jikelihood as a function of and ¢, given the observed

the responses, with mean vectbfY'] = p. For example, responses; for a distribution from the exponential family
assuming the responses are normally distributed with corgan pe written as

mon varianceg?, we have
00, dyy) = [y — b(0)]/a(®) + c(y, ¢). (5)

Y ~ N(p,o?I). , . I
with partial derivatives
Secondly, the systematic component (indirectly) deseribe 921
relationship between the covariates and the mean of the% =[y—V(0)] /a(¢) and 9= =b"(0)/a(¢). (6)
random component, through a vector of latent variables

n = (11,72, .. .,m¢), in this case, The mean can be deduced from the relation
ol
n=Xp (1) E {89] =0 = [t (®)]/a(6) =0,
where the rows of the design matriX = [mi]le are such that
given by the covariate vectors and = (51,52, . .., 5¢) E[Y] = pu="b(9). (7)

is the vector of model parameters. Lastly, a monotonic

link function, g(-), that relates the systematic and randonviMilarly, noting that
components, such that 0%l o>
i = g(pa)- @)
we find that
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= var(Y)=b"(0)a(¢). (8)



As our primary interest lies in estimating the conditionalAgain assuming the canonical link, the second order partial
mean of the responses, the dispersion parametes often derivatives, with respect to the output of the systematic
treated as a nuisance parameter, and the emphasis is placeshponent, are given by
on estimating) as a function of the covariates.

PlL 1 opi _ V'(m)
B. The Link Function o2 (o) o a(¢)’

The main function of the link is to constrain the estimate )
of the conditional mean to lie within reasonable bounds fg#"d those with respect to the model parametgrshy
the particular member of the exponential family concerned, o921, B (s s
such that the domain of the link coincides exactly with the i 2 )Ttk 12)
range of the mean of the distribution. The mean of normally 0B;0Pr a(¢)

distributed data is unconstrained, and so a linear link igpe rejative ease of evaluating the gradient information
appropriate, required to fit the generalised linear model is a strong

9(n) = p. ©) argument in favour of the canonical link. Assuming that the
data,D, represent an independent and identically distributed
sample, the negative log-likelihood is given by

For Binomial responses, the conditional mean lies in th
range(0, 1), and so a logit link,

o B M ¢ ¢
g(p) = logit(p) = log {1#} ) (10) L=— Z l; Z[%ﬂi —b(6)] (13)
i=1 i=1
is suitable. The link function such thét = »;, is known as
the canonicallink, where Note that since we are interested in minimisidg with
. . , respect tq3, we can neglect any additive terms not involving
mi =9g(w) = ni =g’ (m)) = g~ (m:) =(m). 6, such asc(y,$) or multiplicative scaling, e.gl/a(e).

The use of the canonical link simplifies the optimisationG"Ven the gradient vector of, with respect to3,
procedure followed in fitting a generalised linear modeleTh ¢
canonical link also has many desirable statistical progert A = (8£> —xT [y — u, (14)
for instancen; becomes the sufficient statistic for the re- 2fe
sponse distribution, however the choice of link is esséntia , .

and the Hessian matrix,

i=1

arbitrary.
. . aQL d
C. Parameter Estimation _ { ] - _XTwWXx, (15)
Generalised linear models can be fitted to the data via 96:96; i,j=1

a maximum likelihood approach, via the Newton-Raphson

— 3 /" /! 1/ 3
process. The partial derivative of the log-likelihood okth where W' = diag(b"(1m),b"(n2), ..., " (1)) Newton's
ith observation, with respect to the output of the systematrcr:wthOOI updates the model parameters according to the fol-

Do owing rule:
componenty;, is given by .
ol Ol 90; O, B =06~ A A (16)
i 00; Opi I Substituting (14) and (15) into (16) and re-arranging gives
Oy =p = ) XTWXB,,, = XWX - X[y - .

Ol lyi—pm] 1 O Finally, noting thatX 3, = n and defining

. = /! . _
om; a(g) b"(6) on; z=n-W 1[y — ], (17)
wheredy; /On; is simply the local gradient of the inverse link '
function, more commonly known as traetivation function ~we obtain

in the neural networks literature. In the case of the carainic XTWX5t+1 - XTw 2. (18)
link, the partial derivative can be considerably simplified
noting that These are essentially the normal equations for a weighted
. O . least-squares problem, with weigh and modified targets,
Oi=m = pw=V0m = o " (n:) z. The parameter estimation procedure proceeds iteratively
) i alternating between updates of the model parametrsia
we obtain equation (18), and updates gf . and z, via equations (1),
ol lyi — il . ol yi — pilzsj (11) (2) and (17) respectively. Hence the algorithm is also known

o a(o) dB; - a(9) as lteratively Re-Weighted Least-Squares (IRWLS) [26].



Il. GENERALISEDKERNEL MACHINES Lagrange multipliers, the minimiser of the weighted least-
A non-linear variant of the generalised linear model caff9uares problem is given by the solution of a simple system
be derived in an elegant manner via the “kernel trick”, wher@' linear equations,

the systematic component is constructed in a feature space, K+xw™ 1 al| |z
F, given by a fixed transformation of the input space, i.e. 17 0 b 0|’

¢(@): & — F. The systematic component is then given byand the updates oW and z are exactly as before. This

ni =B @(x;) +, (19) system of linear equations can be solved efficiently usieg th
Cholesky decomposition [16, 35] of the matd& + \W ~*.

(22)

note that we have introduced an explicit bias tebmidow-
ever, rather than specify the fixed transformation direitig ~ B- Model Selection
implicitly defined by a Mercer kernel [23 : X x X — R, The generalised kernel machine introduces a small number
which gives the inner product between the images of thef additional hyper-parameters, that must also be estunate
data in the feature space, i€(z,xz’) = ¢(x) - ¢(z’). The from the data, the regularisation parameferand any kernel
interpretation of the kernel as performing an inner produgbarameters, e.gc. The values of these hyper-parameters can
in a fixed feature space is valid for any kernel for which thée determined by minimising a cross-validation [34] est@ma
Gram matrix, of the negative log-likelihood. Thé-fold cross-validation
’ strategy partitions the available data intadisjoint subsets.

K = [k = ’C(”"“mj]i,jzl’ In each iteration, a model is constructed using a different
is positive definite [4]. A common kernel in practical ap_combination oﬂcfls_ubsgts, the remaining subset being used
plications is the radial basis function (RBF) or squareéor performance estimation. The average of the performance

exponential kernel, estimates for thek models is thek-fold cross-validation
estimate. The most extreme form of cross-validation, where
K(z,z') = exp {s]|z — «'||*} (20) each subset consists of a single pattern, is known as leave-

wherer is akernel parameteaoverning th nsitivity of th one-out cross-validation [20], which has been shown to
Erex IS akernel parametegoverning the sensitivity of the provide an almost unbiased estimate of performance on

kernel. In this case, the transformatignmaps the data onto unseen data [21].

the positive orthant of an infinite dimensional unit hyper-— " ... o 0 o o lidation is computationally expen

sphtere. f.‘s the featuretsp])cat(r‘,]é, Is of |nf||.n|t((aj c|1(|men|s|on,dth|e :@%e, and so is generally impractical for use with all but the
systematic component of the generalised kernel model ( allest datasets. However, in the case of least-squaess i

becomes a universal approximator, capable of representip@gression the leave-one-out procedure can be performed
arbitrary relationships between the mean of the respon ’

R . %alytically as a by-product of fitting a model on the entire
distributions and the explanatory variables [24]. For an a.Eataset (e.g. [1,14,38]). These methods can be adapted

:je_rrt]qtt)ws treaﬁ(menttr?f kernel rT]tgtho?cs anc:].e xplonenF |allfam|to provide an approximate leave-one-out cross-validation
istributions, from the perspective of machine leamirtgea method for generalised kernel models, as they are based

than classical statistics, see Canu and Smola [8]. on iteratively re-weighted least-squares. Ketrepresent the

A. Parameter Estimation matrix on the left hand side of the linear system (22),
Assuming the canonical link, such thgt = 0;, the C - K+\W™' 1
primal model parameterg} are determined using penalised 1” 0
maximum-likelihood, via minimisation of the criterion Furthermore, let us also assume ti&t and = remain ap-
¢ \ proximately constant during each iteration of the leave-on
L= [yini — b(n)] + §||5H2 (21) out procedure. It is then relatively straight-forward toogh
i=1 that [9, 10] that the output of the systematic component of a

where )\ is a regularisation parameter [37] controlling theginera”%d kernel machine, for tfié training pattern in the
bias-variance trade-off [15]. Fortunately, this reprasea @ fold of the leave-one-out process, can be approximated

convex optimisation problem [7], with a unique globalby- (i) o

minimum. The representer theorem [19] indicates that the moRE T T (23)
solution of this optimisation problem can be expressed as an _ _ i
expansion over the data of the form This provides the basis for an efficient leave-one-out cross

, , validation estimate of the test likelihood, which can beduse
for model selection. The model selection criterion can be
B=) ajp(z;) = mi=Yy ak(zjz)+b, optimised using the Nelder-Mead simplex algorithm [27],
j=1 i=1 : ; :
or gradient based methods, e.g. scaled conjugate gradient
where a« = (aj,0s,...,04) is a vector ofdual model descent [40] (c.f. [6,13]). Model selection methods based o
parameters. Again an iteratively re-weighted least-segiarsimilar ideas have also been developed for the generalised
(IRWLS) procedure can be used. Using the method dinear models (e.g. [17, 22]).



I1l. GENERALISED KERNEL MACHINE TOOLBOX 100

We have implemented an object-oriented MATLAB tool-
box! implementing the generalised kernel machine. The 50¢
toolbox provides:

« A number of simple kernel objects suitable for many ba-
sic applications@linear , @polynomial and@rbf.

o The base class@gkm representing the functionality
common to all generalised kernel machines.

o Concrete subclasses used to implement the example
detailed in this section, name@®@krr - kernel ridge re-
gression,@klr - kernel logistic regression an@kpor -100p
- kernel Poisson regression.

« Optimisation objects@simplex and@scg providing 1% ‘ ‘ ‘ ‘ ‘
automatic model selection. 0 10 20 Timggms) 40 50 60

« An object representing a model selection criterion,

@aloo, which corresponds to the approximate leave-

. : LAl : :Fig. 1. Kernel ridge regression (KRR) model of Silverman’s mojole
gnet_out Ielsélmate of the test likelihood, as described ifl- ok dataset (3],
ection lI-b.

The design of the toolbox is quite flexible and may be , ]
extended at a later date to provide additional functiopalit "€9ression to the class labels (e.g. [41]), the kernel Fishe
The toolbox is also able to automatically generate nefiscriminant (KFD) classifier [25]. A Bayesian treatment
instances of the generalised kernel machine, using the MA®f this type of generalised kernel machine is equivalent to
LAB symbolic math toolbox to evaluate the loss functionG@ussian process regression [30]. .
the canonical link and the weighting function used in th A new class@krr, implementing the kernel ridge regres-
the C ! ghting _ 8ion machine can be added to the MATLAB toolbox, using
iteratively re-weighted least squares procedure, frontiagst the following command:
describing the canonical functiob(-). Thefix method can _ , e

. fix(gkm(acronym’, ’krr’, ...
the be used to save the new form of GKM_to disk as a ‘name’, ‘kernel ridge regression’, ..
new concrete subclass @gkm A web-server is currently ‘canonical’, ’0.5 *eta"2"));

under construction to produce bespoke GKM classes for . _
users without access to the symbolic math toolbox. Here, we have specified an acronym, used to specify the
name of the new class, and the full name of the model, for

A. Example: Kernel Ridge Regression the purpose of displaying the model. The kernel ridge regres
A variety of kernel learning algorithms are exactly analoSion model was then used to model Silverman’s motorcycle

gous to a generalised kernel machine taking for the randofnchmark dataset [33], using a radial basis function kerne

component, a homoscedastic Gaussian distribution (5). N&S shown in Figure 1.

i_ng that in Fhis c_aseb(e) = 6*/2, and therefore the canonical g Example: Kernel Logistic Regression

link is the identity functiong(x) = ¥’ (n) = n. Furthermore,

b"”(9) = 1, such that

Acceleration (g)

Generalised linear models, and by extension generalised
kernel machines can also be applied to statistical pattern
W = diag(b” (m),b" (n2),...,0"(ne)) = I. recognition, where the target,, indicates whether thé'"
pattern belongs to the positive;(= 1) or negative class
(y; = 0) respectively. In this case the responses can be
viewed as realisations of a series of Bernoulli trials, such

Similarly, asn = u, the modified targets are given by

Z=71—W_1[y—u}=y. that
Therefore the system of linear equations giving the model Flyism) = m) (1 —m)' ¥,
parameterse, simplifies to give, where 7; represents the probability that th&" example
[ K+)M 1 } { a ] { y } belongs to the positive class (conditioned on the inputorect
17 0 bl =1 o x;). The Bernoulli distribution can be written as a one-
o ] ; ) parameter member of the exponential family as
This is identical to the system of linear equations to beesblv
in fitting a kernel ridge regression (KRR) model [32], or f(y;0) = exp {yf — log [1 +exp (0)]},
equivalently the least-squares support vector machine (L§/here
SVM) [35, 36], regularisation network (RN) [29] and as Fish- exp{0}
ers’ linear discriminant analysis is equivalent to leaptieres =1 + exp{6}’

1We will shortly make the toolbox freely available under thare of the In th_is case, the Bernoulli distribution is defined by the
GNU general public license. functions,a(¢) = 1, b(6) = log[1+exp(0)] ande(y;; ¢) = 0.
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Fig. 2. Kernel logistic regression (KLR) model of Ripley'snsjetic ~ Fig. 3. Kernel Poisson regression (KPoR) model of Anderseng cancer
benchmark dataset [31]. benchmark dataset.

Note that the dispersion parameter, is redundant as the iS given by a Poisson distribution,

Bernoulli distribution is completely specified by the mean, exp{—p; bl

7. If we take the canonical link, such that= n, we have fyis i) = m
that '
. 4 such that the canonical function i§6) = exp{6}, and so
— — logit(r) = 1 . '
n=g(r) = logit(m) = log { 1+ 7r} we obtain a logarithmic canonical link,
As usual, the parameters of the model can be estimated by n; = log{ s}
iteratively re-weighted least-squares, where ) ) ) )
A class implementing kernel Poisson regression can be saved
W = diag(m (1 — 1), m2(1 — ma), ..., m(1 — 7)), to disk using the following command:

and z is given by (17). The resulting model is known asfix(@km(acronym’, "kpor’ ... .

kernel logistic regression (KLR) [11, 18]. The closely telh ‘name’, 'kernel Poisson regression’, ...

kernel probit regression KPR method [5, 9] can be viewed as 'canonical’, ‘exp(eta)));

a GKM with a Bernoulli random component and the non: . . . .
canonical probit link. A Bayesian trelzaatment of this form!ne kernel Poisson regression model is then applied to An-
of generalised kernel machine gives rise to the Gaussi&lgrsen's lung cancer dataset, with results shown in Figure 3

process classifier [30,39]. A new class implementing thelere we adopt an inhomogeneous quadratic kernel,

kernel logistic regression algorithm can be saved to disk )

using the following command, K(z,z') = (x -2’ +¢)

fix(gkm(acronym’, 'KI, ... . wherec is a kernel parameter controlling the relative impor-
name’, 'kernel logistic regression’, ... ¢ f first and d order t Th del has f
‘canonical’, log(1+exp(eta)))): tance of first and second order terms. The model has four

. . . ~ input features, the first represents the mid-point of the age

Figure 2 shows the results obtained using kernel logistiginge, and three binary variables that are set to one toatedic

regression for Ripley's synthetic benchmark dataset [31]. the city is Fredricia, Horsens or Kolding respectively (sej

_ ) is indicated by all three of these inputs being set to zero).

C. Example: Kernel Poisson Regression

For the final example, we chose a more unusual model thRt Agnostic Learning versus Prior Knowledge Challenge

does not appear to have an existing kernel variant, namely The examples given in this paper are intentionally small-
Poisson regression. The Poisson distribution arises @lftur scale, for the purpose of illustration, however, the toalbo
as the distribution of a random variable recording the numb@as also been used to implement competitive solutions for
of occurrences of a rare event with a constant average ratRe prior knowledge track of the IJCNN-2007 Agnostic
over a given period or population [3]. For example, Andersepearning versus Prior Knowledge ChalleAgaising much

[2] considers the incidence of lung cancer in the popul&tionarger datasets (current placinggDA1%t, GINA = 15t HIVA

of four Danish cities, namely Fredricia, Horsens, Koldingist NOVAI®t, SYLVA= 3'd). These examples are described
and Vejla, within six different age groupg((— 54, 55 —59, in detail in a companion paper [12].

60 — 64, 65 — 69, 70 — 74 and > 75). We therefore construct

a generalised kernel machine, where the random componenihttp://www.agnostic.inf.ethz.ch/



IV. CONCLUSIONS [17]

In this paper, we have described a common framework,
uniting a wide variety of existing and novel kernel learning
methods, viewing each as a non-linear variant of a particul&L8!
generalised linear model based on the “kernel trick”. This
framework has been implemented in the form of a MATLAB[19]
toolbox supporting the creation of novel generalised klem‘fzo]
machines, with fully automated training and model selectio
procedures. The toolbox has also been used successfullyj2g
create methods for kernel survival analysis and modelling
of extreme values. In relating this family of kernel learmin [22]
methods to generalised linear models, we also inherit a
vast body of theory, including deviance and goodness-o{é3
fit, analysis of variance, asymptotic distributions for pa- ]
rameter estimates and confidence intervals on predictions.
These ideas potentially have a great impact in the practicgf!
application of kernel learning methods, but are beyond the

scope of this paper. [25]
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