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Abstract— Artificial neural networks have proved an attrac-
tive approach to non-linear regression problems arising in
environmental modelling, such as statistical downscaling, short-
term forecasting of atmospheric pollutant concentrations and
rainfall run-off modelling. However, environmental datasets are
frequently very noisy and characterised by a noise process
that may be heteroscedastic (having input dependent variance)
and/or non-Gaussian. The aim of this paper is to review an
existing methodology for estimating predictive uncertainty in
such situations, and more importantly illustrate how a model
of the predictive distribution may be exploited in assessing the
possible impacts of climate change and to improve current
decision making processes. The results of the WCCI-2006
predictive uncertainty in environmental modelling challenge are
also reviewed and some areas suggested where further research
may provide significant benefits.

I. I NTRODUCTION

Neural networks have been shown to provide a simple and
flexible approach to non-linear regression problems arising in
the environmental sciences. Some recent applications include
statistical downscaling [13], water level-discharge modelling
[1], river stage forecasting [8] and air quality forecasting [24].
The presence of special sessions devoted to environmental
sciences and climate modelling at IJCNN-2005 and IJCNN-
2006 provides further evidence of the importance of this field
of research. Environmental modelling problems are typically
very noisy and often characterised by a noise process that is
heteroscedastic (i.e. the variance of the noise process is input-
dependent) and may also be non-Gaussian. Conventional
neural network regression techniques aim to estimate the
conditional mean of the target data, via minimisation of
a sum-of-squares error function. The aim of this paper is
to demonstrate that practical benefits can be accrued by
attempting to model the entire distribution of the noise
contaminating the data in addition to the conditional mean.
For example, we may estimate the conditional variance of the
noise process, which may be achieved by training a second
regression network to predict the squared residuals of the
first. The combined model provides a Gaussianpredictive
distribution indicating the relative plausibility of different
values for the target function. The provision of a predictive
distribution, instead of only the conditional mean, can be
exploited in a number of ways:

• The predictive distribution implies a plausible interval

(a.k.a. “error bars”) on all predictions, which in turn
provide a valuable indicator of the reliability of the
model.

• An estimate of the predictive distribution allows the
estimation of the truerisk, i.e. we may integrate the loss
associated with all plausible outcomes, weighted by the
probability of their occurrence.

• Where a neural network is used as one component
within a much larger model, the uncertainties associated
with the inputs and outputs of each component, may be
propagated through the model (e.g. via a Monte-Carlo
simulation) so that all sources of uncertainly can be
integrated over to obtain a moderated prediction.

• Often we are interested in extreme events, especially the
exceedance of some arbitrary threshold. For instance a
statistical downscaling model might be used in estimat-
ing the impacts of future climate on the risk of flooding
in a particular catchment, by modelling the linkage
between large scale circulation and local precipitation.
By their very nature, extreme events are not modelled
well by an estimate of conditional mean of the data.
However, given a full predictive distribution, we may
at least estimate theprobability of an extreme event by
integrating the upper tail of the predictive distribution,
even if the estimate of the conditional mean never
exceeds the threshold.

Modelling predictive uncertainty in environmental data is
also interesting from a machine learning perspective as
the noise processes involved are often non-Gaussian and/or
heteroscedastic, and so “off-the-shelf” solutions may not be
entirely satisfactory, and thus there is significant scope for
further research.

The remainder of this paper is structured as follows:
Section II describes a simple methodology for estimating
the predictive distribution based on methods developed by
Peter Williams [29–32]. Section III demonstrates that an
estimate of the predictive distribution can be exploited to
provide practical benefits for the end-user, via an illustrative
(if a little contrived) example based on the estimation of
insurance losses associated with flood hazards. The results
of the WCCI-2006 Predictive Uncertainty in Environmental
Modelling Competition, which aimed to stimulate research



in this area, are presented in Section IV. Section V discusses
some areas where further research may provide significant
benefits. Finally, the work is summarised and conclusions
draw in Section VI.

II. M ODELLING PREDICTIVE UNCERTAINTY WITH

NEURAL NETWORKS

In this section, we outline a neural network approach to
modelling predictive uncertainty in environmental applica-
tions, based on a sound Bayesian methodology developed by
Williams [29–32]. For this study, we adopt the familiar Multi-
Layer Perceptron network architecture (see e.g. Bishop [3]).
The optimal model parameters,w, are determined by gradient
descent optimisation of an appropriate error function,ED,
over a set of training examples,D = {(xi, ti)}N

i=1 , xi ∈
X ⊂ Rd, ti ∈ R, where xi is the vector of explanatory
variables andti is the desired output for theith training
pattern. The error metric most commonly encountered in non-
linear regression is the sum-of-squares error, given by

ED =
1
2

N∑
i=1

(yi − ti)2, (1)

where yi is the output of the network for theith training
pattern. In order to avoid over-fitting to the training data,
however, it is common to adopt a regularised [27] error func-
tion, adding a termEW penalising overly-complex models,
i.e.

M = αEW + βED, (2)

whereα andβ are regularisation parameters controlling the
bias-variance trade-off [9]. Minimising a regularised error
function of this nature is equivalent to the Bayesian approach
which seeks to maximise the posterior density of the weights
(e.g. [18, 20]), given by

P (w | D) ∝ P (D | w)P (w),

whereP (D | w) is the likelihood of the data andP (w) is
a prior distribution overw. The form of the functionsED
and EW correspond to distributional assumptions regarding
the data likelihood and prior distribution over network pa-
rameters respectively. The usual sum-of-squares metric (1),
corresponds to a Gaussian likelihood,

P (D | w) =
1√

2πβ−1
exp

{
− [ti − y(xi)]2

2β−1

}
with fixed varianceσ2 = 1/β. Here, we adopt the Laplace
prior propounded by Williams [30], which corresponds to a
L1 norm regularisation term,

EW =
W∑
i=1

|wi|. ⇐⇒ P (w) =
1
2β

exp
{
−|w|

β

}
whereW is the number of model parameters. An interesting
feature of the Laplace regulariser is that it leads to the

automatic pruning of redundant model parameters. From 2,
at a minimum ofM we have∣∣∣∣∂Ey

∂wi

∣∣∣∣ = α

β
wi > 0,

∣∣∣∣∂Ey

∂wi

∣∣∣∣ < α

β
wi = 0.

As a result, any weight not obtaining a data misfit sensitivity
of α/β is set exactly to zero and can be pruned from the
network.

A. Eliminating Regularisation Parameters

The hyper-parametersα andβ can be estimated by max-
imising the evidence [18] or alternatively may be integrated
out analytically [5, 30]. Here we take the latter approach; the
posterior distribution of the parameters is given by

p(w) =
∫

p(w|α)p(α)dα. (3)

Assuming the Laplace prior, the prior distribution over the
weights of the network, conditioned on the regularisation
parameterα, is given by,

p(w|α) = ZW(α)−1 exp{−αEW} (4)

where the necessary normalising constant is given by

ZW(α) =
(

2
α

)W

. (5)

Substituting equations 4 and 5 into equation 3, adopting the
(improper) uninformative Jeffreys prior,p(α) = 1/α [16],
and noting thatα is strictly positive,

p(w) =
∫ ∞

0

2−W αW−1 exp{−αEW}dα.

Using the Gamma integral,
∫∞
0

xν−1e−µxdx = Γ(ν)
µν (Grad-

shteyn and Ryzhik [12], equation 3.384), we obtain

p(w) =
Γ(W )

(2EW)W
.

Taking the negative logarithm and omitting irrelevant con-
stant terms,

− log p(w) = W log EW . (6)

Applying a similar treatment to the data misfit term (assum-
ing a sum-of-squares error), we have

L =
1
2
N log ED + W log EW .

For a network with more than one output unit, it is sensible
to assume that each output has a different noise process (and
therefore a different optimal value forβ). It is also sensible
to assign hidden layer weights and weights associated with
each output unit to different regularisation classes so they
are regularised separately. This leads to the training criterion
used in this study:

L =
N

2

O∑
i=1

log Ei
D +

C∑
j=1

Wj log Ej
W ,



whereO is the number of output units,C is the number of
regularisation classes (groups of weights sharing the same
regularisation parameter) andWj is the number of non-
zero weights in thejth class. Note that bias parameters are
not normally regularised. This approach provides a sound
basic approach to non-linear regression using multi-layer
perceptron networks, with Bayesian regularisation to prevent
over-fitting and automatic selection of an appropriate net-
work architecture as a result of the Laplace prior. As the
regularisation parameters are integrated out analytically, the
user need only select the initial number of hidden layer units,
and more importantly an appropriate data misfit term that
represents any available prior knowledge regarding the form
of the noise process contaminating the data.

B. Choice of Data Misfit Term

In this paper, we are concerned with modelling predic-
tive uncertainty, and so rather than simply estimating the
conditional mean of the target data, we seek to construct
a model such that the output specifies the entire predictive
distribution. A sensible first step in solving an inference
problem is to select an appropriate likelihood function to
describe the statistical properties of the target data (c.f. [19]).
The training criterion for the neural network should then be
based on the negative logarithm of a parametric likelihood
function, that incorporates any distributional assumptions
regarding the noise process suggested by our prior knowledge
of the data. In order to obtain a predictive distribution, we
simply construct a network with one output for each of the
parameters of this likelihood.

The most basic likelihood used in this study, assumes a
heteroscedastic (input dependent variance) Gaussian noise
process, i.e.

ED =
∑̀
i=1

{
log σ(xi) +

[µ(xi)− ti]2

2σ2(xi)

}
. (7)

Note the multi-layer perceptron network now has two out-
put units, one giving the conditional mean of the target
distribution, µ(x), as before, and an additional unit giving
the conditional standard deviation,σ(x). A linear activation
function is used in the output unit corresponding toµ(x), and
an exponential activation function for the unit corresponding
to σ(x), to enforce strictly positive estimates of conditional
variance. This approach provides two advantages: Firstly
the estimates of conditional variance provide error bars,
indicating the uncertainty of model predictions [21, 22, 31].
Secondly the output of the model now completely specifies
the target distribution, so the regularisation parameterβ is
no longer necessary. This data-misfit term is appropriate
for regression on temperature data, where a Gaussian noise
process is intuitively reasonable, but where the variability in
temperature as well as the expected temperature may depend
on, for example, the time of year.

The concentration of atmospheric pollutants provides an
example of a type of data where a more complex likelihood

may be appropriate. Clearly a pollutant concentration cannot
be negative, and the uncertainty in predictions is likely to be
skewed upward. A common ploy would be to implement a
log-normal likelihood, by simply taking the logarithm of the
target data and employing the data misfit given in (7).

Modelling frontal precipitation data requires a more so-
phisticated statistical model, and is often modelled using a
Gamma distribution [26] or a mixture of exponentials [33]. In
this paper we adopt the hybrid Bernoulli/Gamma error metric
proposed by Williams [32]. The distribution of the amount
of precipitation,X, is modelled by

P (X > x) =
{

1 if x < 0
αΓ
(
ν, x

θ

)
if x ≥ 0 (8)

where 0 ≤ α < 1, ν > 0, θ > 0 and Γ(ν, z)
is the (upper) incomplete Gamma function,Γ(ν, z) =
Γ(ν)−1

∫∞
z

yν−1e−ydy. The model is then trained to approx-
imate the conditional probability of rainfallα(xi) and the
scale,θ(xi), and shape,ν(xi), parameters of a Gamma dis-
tribution modelling the predictive distribution of the amount
of precipitation. Logistic and exponential activation functions
are used in output layer neurons to ensure that the distribu-
tional parameters satisfy their respective constraints.

III. E XPLOITING PREDICTIVE UNCERTAINTY

Environmental modellers are commonly interested in the
impacts of extreme events, for example the impact of changes
in future climate on local rainfall and subsequently on the
flood hazard in susceptible catchments. General circulation
models are considered to provide the best basis for estimating
future climates that might result from anthropogenic modi-
fication of the atmospheric composition (i.e., the enhanced
greenhouse effect). However, output from these models can-
not be widely or directly applied in many impact studies
because of their relatively coarse spatial resolution. The
mismatch in scales between model resolution and the increas-
ingly small scales required by impacts (e.g., agriculture and
hydrology) analyses can be overcome by downscaling. Two
major approaches to downscaling, statistical and dynamical
(the latter using physically-based regional climate models),
have been developed and tested in recent years, and shown
to offer good potential for the construction of high-resolution
scenarios of future climate change [10, 15, 28, 34]. Statistical
downscaling methods seek to model the relationship between
large scale atmospheric circulation, on say a European scale,
and climatic variables, such as temperature and precipitation,
on a regional or sub-regional scale, based on the historical
record.. Downscaling is an important area of research as
it bridges the gap between predictions of future circulation
generated by General Circulation Models (GCMs) and the
effects of climate change on smaller scales, which are often
of greater interest to end-users.

In order to estimate the impacts of changes in future
climate on flood hazard, the predictions of a general cir-
culation model are downscaled to provide predictions of
future precipitation patterns, which in turn are processed by a



hydrological model to assess the effect of changes in rainfall
patterns on water-levels in the river fed by the catchment
being studied. In this example, we will consider a fictitious
catchment1 in which there is a flood hazard if the three-day
total precipitation is in excess of 35 cm. Figure 1 shows a plot
of the financial loss associated with flood events as a function
of the three-day total precipitation; the loss is modelled as a
a constant component that is incurred whenever the river is
unable to contain the run-off, and a component that reflects
the the additional damage resulting from increasingly severe
flood events.
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Fig. 1. Financial loss associated with flood events in a susceptible catchment
as a function of the three-day total precipitation.

Figure 2 shows the three-day total precipitation time series
for the study catchment area for the period 1979-1993.
Note that many of the apparent dry spells are caused by
missing data in the historical record rather than the absence
of precipitation and are not included in the analysis. The
measured loss for the observed time series is 49.02 units.
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Fig. 2. Three-day total precipitation time series for a catchment area
susceptible to flooding.

Figure 3 shows the predicted three-day total precipitation
based on a conventional neural network downscaling model
trained to estimate the conditional mean of the target dis-
tribution. The network was trained on two segments of the

1The results are actually based on downscaled predictions for a real
precipitation time series data from Newton Rigg, a rather wet station in
the North West of the United Kingdom.

precipitation time series spanning the periods 1961–1978 and
1994–2000. Note that the conditional mean systematically
under-predicts the extreme rainfall events, as the predictive
distribution is highly skewed. As a result, the predicted loss
according to the simple neural network downscaling model
is only 8.22 units, which severely under-estimates the true
loss.
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Fig. 3. Predicted three-day total precipitation time series for a catchment
area susceptible to flooding, using a neural network providing the conditional
mean of the target distribution.

A second neural network downscaling model was trained,
this time using the hybrid Bernoulli/Gamma data misfit term
(8). In this case, the model has three outputs, one supplies
and estimate of the probability of rainfall and two that
define a Gamma distribution modelling the plausibility of
different amounts of rainfall. As this model provides a full
probabilistic prediction, it is possible to generate synthetic
precipitation time series, using the neural network as a
conditional weather generator model. In order to infer the
expected loss associated with the flood hazard, a Monte Carlo
simulation is conducted using 100,000 synthetic precipitation
time series generated by the network. Figure 4 shows a
histogram of the measured losses from the Monte Carlo
simulation, clearly the actual loss of 49.02 units is plausible,
given the prediction distribution of loss. The expected loss,
via Monte-Carlo integration, is 70.72 units, which is much
closer to the recorded loss.
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Fig. 4. Distribution of expected financial loss associated with flood events
in a susceptible catchment.



While this example is deliberately somewhat contrived, it
does demonstrate that a probabilistic characterisation of the
uncertainty of model predictions can be exploited in impact
studies, especially where the principal focus lies on the
implications of extreme events, which by their very nature are
not modelled well by the conditional mean. The integration
over sources of uncertainty also provides the results in a
format that is well suited to the needs of end-users, such
as government institutions or the insurance industry. Clearly
the distribution of plausible losses is exactly the information
required by such users for well-informed policy-making and
forward planning.

IV. T HE PREDICTIVE UNCERTAINTY IN ENVIRONMENTAL

MODELLING CHALLENGE

The WCCI-2006 predictive uncertainty in environmental
modelling challenge consisted of oneSYNTHETIC bench-
mark dataset and three real-world environmental datasets
PRECIP, SO2 and TEMP. The format of the competition
was based closely on the regression problems of the earlier
Pascal predictive uncertainty challenge. The negative log-
likelihood of the test data was used as the performance
criterion for the final ranking of submissions, as it is the
natural measure of the fit of a distribution to a set of data.
Two standard methods were available for describing the
predictive distribution for each pattern, the mean and variance
of a Gaussian predictive distribution, or a set of quantiles,
allowing the definition of arbitrary predictive distribution. An
unusual feature of the competition is that the competitors had
the option of suggesting alternate forms for specifying the
predictive distribution (as the likelihood can be described in
any number of parametric forms). A mixture Gaussian option
was added at a late stage in the competition in response
to a request from one of the competitors. The target data
for all three of the real-world environmental benchmark
datasets are (finely) quantised, for example precipitation data
is only measured to the nearest0.1 mm. In principle it would
therefore be possible to make the negative log-likelihood
arbitrarily low by specifying the predictive distribution (via
quantiles) as a set of delta functions centred on the quantised
values. This technique was employed by some entries to the
original Pascal predictive uncertainty challenge. In order to
prevent this, the minimum allowable width of the quantiles
(and similarly the variances of the individual components of
a mixture Gaussian predictive distribution) were limited to
match the quantisation interval used.

A. Reference Submissions

Three baseline models were submitted for each dataset,
which gave a fixed predictive distribution for all patterns:
Baseline #1 - fixed Gaussian predictive distribution spec-
ified via the unconditional mean and variance of the target
data,Baseline #2 - fixed Gaussian distribution specified
as a set of quantiles andBaseline #3 - fixed predictive
distribution specified by quantiles representing the empirical
distribution of the target data. A fourth baseline model was

created for theSO2benchmark, giving a fixed predictive dis-
tribution for all patterns based on a Gaussian mixture model
of five components, fitted using the standard Expectation
Maximisation (EM) algorithm, as implemented by the NET-
LAB package. In addition to these baseline models, neural
network models were also submitted for each benchmark,
the training procedure used is described in Section II. A
heteroscedastic Gaussian data mis-fit term (7) was used for
the SYNTHETIC and TEMPbenchmarks, a heteroscedastic
log-normal term for theSO2 benchmark and the hybrid
Bernoulli/Gamma term (8) term for thePRECIP benchmark.
In order to avoid training difficulties due to local minima of
the cost function, 20 models were trained in each case, with
randomly initialised weights, and the model giving the lowest
value for the regularised loss retained. These models provide
an indication of the “minimum” and “competitive” levels of
performance for each benchmark.

B. TheSYNTHETICBenchmark

A synthetic heteroscedastic regression problem, taken from
Williams [31], was included in the challenge, principally
to provide a relatively small dataset that could be easily
visualised for the purposes of initial model development.
However, as the true conditional mean and variance functions
are known, it is straight-forward to assess the quality of the
model. The univariate input patterns,x, are drawn from a
uniform distribution on the interval(0, π), the corresponding
targets,y, are drawn from a univariate Normal distribution
with mean and variance that vary smoothly withx:

xi ∼ U(0, π),

yi ∼ N

(
sin
[
5x

2

]
sin
[
3x

2

]
,

1
100

+
1
4

[
1− sin

[
5x

2

]]2)
.

Figure 5 shows a plot of the synthetic benchmark dataset,
along with indications of the true conditional mean and stan-
dard deviation. The heteroscedastic (input-dependent vari-
ance) nature of the data is clearly evident.
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Fig. 5. Plot of the training data for theSYNTHETICbenchmark dataset,
along with an indication of the true conditional mean,µ(x) and conditional
standard deviation,σ(x).



TABLE I

TRAINING AND TEST SET NEGATIVE LOG-LIKELIHOOD STATISTICS FOR

THE SYNTHETICBENCHMARK.

Name Method Train Test
NLPD NLPD

Reference ground truth 0.3333 0.3489
Harva varmlp (MoG) 0.3251 0.3858
Cawley MLP 0.3083 0.4046
Kurogi et al. CAN2 ensemble + CV 0.2236 0.4304
Boardman Support Vector Regression 0.4150 0.4745
Nikulin CM+GbO 0.3590 0.4805
Bagnall YJ 1.0081 1.0313
Reference Baseline #1 1.1064 1.1357
Reference Baseline #2 1.1104 1.1374
Reference Baseline #3 0.7923 1.2324

Table I shows the negative log-likelihood of the training
and test sets of theSYNTHETIC benchmark for selected
entries. It can be seen that many of the entries were able
to make clear improvements in modelling the predictive
distribution over the baseline models, with the best models
approaching the performance of the optimal “ground truth”
model used to generate the data. However, theSYNTHETIC
benchmark is relatively straight-forward, the only unusual
feature being the heteroscedasticity of the noise process.

C. ThePRECIP Benchmark

The PRECIP benchmark models a realistic statistical
downscaling exercise, the aim of which is to predict the
(scaled) precipitation for Newton Rigg, a relatively wet sta-
tion in the North-West of the United Kingdom, using inputs
representing large scale circulation features (see [6, 14] for
further details). Figure 6 shows a histogram of the target data
for the training set of thePRECIP benchmark, highlighting
a number of unusual features of this dataset. Firstly, the data
is non-negative (it would make little sense to talk of negative
rainfall). Secondly, there is a large probability mass centred
on zero, representing the proportion of days where no rainfall
occurs. Rainfall presents an example of amixeddistribution,
and is often modelled as separate occurrence and amount
processes, where the probability of rainfall is given by, e.g.
a logistic regression model, and the amount of rainfall given
by a e.g. linear regression model fitted to the training data
representing days where rainfall was actually observed. The
hybrid Bernoulli/Gamma mis-fit term (8) simply combines
the occurrence and amount processes as a single model within
the framework of maximum likelihood. The extra probability
mass at the origin is easily accommodated by the quantile
representation of the predictive distribution.

Table II shows the test set MSE and NLPD statistics for
selected models. Note that while many model were able to
make useful reductions in the mean-squared error, only one
of the submissions was able to improve onBaseline #1 .
This suggests that current modelling techniques are likely
to be inadequate for use in statistical impact studies of the

TABLE II

TEST SET MEAN-SQUARED ERROR(MSE) AND NEGATIVE

LOG-LIKELIHOOD (NLPD) STATISTICS FOR THEPRECIP BENCHMARK.

Name Method MSE NLPD

Cawley MLP 0.6305 -0.5095
Harva varmlp 5.4493 -0.2792
Reference Baseline #1 1.0002 -0.1772
Takeuchi Kernel QR 0.6109 0.7469
Bagnall YJ 2.1072 1.1139
Nikulin CM+GbO 0.6539 1.2724
Boardman Support Vector Regression 0.6441 1.6055
Reference Baseline #2 1.0001 2.0346
Reference Baseline #3 1.0001 2.0496
Kurogi et al. CAN2 ensemble + CV + 0.6465 3.0982

hetero + quantile

nature described in Section III.

D. TheSO2 Benchmark

The SO2 benchmark represents an atmospheric pollution
forecasting problem, where the aim is to predict 24 hours
in advance the SO2 concentration in urban Belfast, based on
meteorological conditions and current SO2 levels (see [23]
for further details). Table III shows the test set mean-squared
error and negative log likelihood for selected models over the
SO2benchmark. Clearly this is the noisiest of the benchmark
datasets, and while some reduction in the mean-squared-error
is possible, it is difficult to produce a model that improves on
the baseline models in terms of the quality of the predictive
distribution.

E. TheTEMPBenchmark

The TEMPbenchmark problem is perhaps the most easily
modelled of the real-world benchmark problems, and again
represents a downscaling problem, where the aim in this case
is to model the daily maximum temperature at the Writtle
station in the South-East of the United Kingdom base on
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Fig. 6. Histogram of the target data for the training set of thePRECIP
benchmark dataset.



TABLE III

TEST SET MEAN-SQUARED ERROR(MSE) AND NEGATIVE

LOG-LIKELIHOOD (NLPD) STATISTICS FOR THESO2BENCHMARK.

Name Method MSE NLPD

Cawley MLP 0.7985 4.2550
Harva varmlp 0.8333 4.3702
Reference Baseline #4 1.0000 4.4964
Reference Baseline #1 1.0001 4.4968
Nikulin CM+GbO 0.8576 4.6162
Bagnall YJ 1.7598 4.7578
Boardman Support Vector Regression 0.8396 5.0897
Reference Baseline #3 1.0000 5.1655
Reference Baseline #2 1.0000 5.2181
Takeuchi Kernel QR 0.6884 6.0425
Kurogi et al. CAN2 ensemble + CV + 0.7807 11.0063

hetero + quantile

TABLE IV

TEST SET MEAN-SQUARED ERROR(MSE) AND NEGATIVE

LOG-LIKELIHOOD (NLPD) STATISTICS FOR THETEMPBENCHMARK.

Name Method MSE NLPD

Snelson Sparse pseudo-input 0.0661 0.0348
Gaussian process (SPGP)

Cawley MLP 0.0693 0.0530
Kurogi et al. CAN2 ensemble + CV + 0.0681 0.0591

hetero + quantile + outlier
Boardman Support Vector Regression 0.0709 0.0760
Nikulin CM+GbO 0.0729 0.1076
Bagnall Linear Regression 0.077432 0.136235
Harva varmlp 0.0925 0.2015
Whittley QuantLin 24.9839 0.6251
Reference Baseline #1 1.0000 1.3004
Reference Baseline #2 1.0000 1.4151
Reference Baseline #3 1.0000 1.4177
Takeuchi Kernel QR 0.0965 24.7922

similar large scale circulation features as those used for the
PRECIP benchmark. In this case a heteroscedastic Gaussian
noise process is a reasonable assumption. Table IV shows
the test set MSE and NLPD statistics for selected models,
in almost all cases the models significantly improve on the
baseline models in terms of the NLPD.

F. Final Competition Standings

The final standings in the competition, decided by mean
NLPD score over the three environmental datasets, are shown
in Table V. The overall winner is Markus Harva.

V. A REAS FORFURTHER RESEARCH

A. Inherent Bias in the Conditional Variance

It is well known that estimates of the conditional variance
are likely to be significantly biased. If the model of the
conditional mean over-fits the data, this reduces the apparent
local noise density, and so error bars based on the conditional
variance will be unrealistically narrow. This problem has

TABLE V

FINAL STANDINGS IN THE COMPETITION - THE OVERALL WINNER,

DECIDED BY MEAN NLPD SCORE, IS MARKUS HARVA .

Name PRECIP SO2 TEMP Mean

Cawley -0.5095 4.2550 0.0530 1.2661
Harva -0.2792 4.3702 0.2015 1.4308
Nikulin 1.2724 4.6162 0.1076 1.9987
Bagnall 1.1139 4.7578 0.1362 2.0026
Boardman 1.6055 5.0897 0.0760 2.2571
Kurogi et al. 3.0982 11.0063 0.0591 4.7212
Takeuchi 0.7469 6.0425 24.7922 10.5272
Whittley ∞ ∞ 0.6251 ∞
Snelson ∞ ∞ 0.0348 ∞

previously been addressed via Bayesian approaches [4, 11],
and by the use of leave-one-out cross-validation [7]. However
these approaches are currently only suitable for relatively
small scale applications, with only a few thousands of train-
ing patterns. Further research is needed to develop large scale
algorithms suitable for environmental applications, where
much larger amounts of data are typically available.

B. Incorporating the Uncertainty in the Model Parameters

In this paper we have reviewed the use of maximum-
likelihood based loss functions for neural networks, which
allow us to incorporate prior knowledge regarding the un-
certainty in model predictions due to the inherent noise
process contaminating the data. Another important source of
uncertainty lies in the uncertainty due to the estimation of
the model parameters from a finite sample of data. It seems
likely that a better model of the predictive distribution might
be obtained by including this effects of the uncertainty in
the model parameters, e.g. via the Laplace approximation
[17, 18] or via Markov-Chain Monte Carlo methods [20].

C. The Form of the Predictive Distribution

While expert knowledge is sometimes available regarding
the form of the noise process contaminating the data, it would
be useful also to have a data-driven approach, where the
form of the noise process is also inferred from the training
data. The mixture density network [2], where the output of
the model specify the components of a Gaussian mixture
model of the predictive distribution, represents the most basic
approach. The warped Gaussian Process, [25], in which the
observation space is transformed so as to be well modelled
as a Gaussian process, represents a more recent approach.

VI. CONCLUSIONS

In this paper we have demonstrated that a model of
the predictive distribution can be exploited in studies of
the impacts of changes in future climate, via a somewhat
contrived, but nevertheless illustrative example. An online
competition has been organised in an attempt to promote
research on methods for estimating the uncertainty inherent
in statistical predictions. The results demonstrate that this



is a difficult topic, where standard approaches do not yield
uniformly good results. We hope that the competition has
gone some way to highlight an area where further research
is likely to produce practical benefits in the analysis of
environmental data.
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