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Abstract— While the model parameters of many kernel learn- A. The Balanced Error Rate (BER) Criterion
ing methods are given by the solution of a convex optimisation
problem, the selection of good values for the kernel and
regularisation parameters, i.e. model selection, is much less
straight-forward. This paper describes a simple and efficient
approach to model selection for weighted least-squares support o
vector machines, and compares a variety of model selection Prediction
criteria based on leave-one-out cross-validation. An external c- ct
cross-validation procedure is used for performance estimation,
with model selection performed independently in each fold to
avoid selection bias. The best entry based on these methods
was ranked in joint first place in the WCCI-2006 performance
prediction challenge, demonstrating the effectiveness of this

TABLE |
CONFUSION MATRIX FOR TWO-CLASS PATTERN RECOGNITION

Truth

The Balanced Error Rate (BER) statistic is the average of

approac the misclassification rates on examples drawn from positive
|. INTRODUCTION and negative classes (denoted &y and C~ respectively),
i.e.
Kernel learning methods, such as the least-squares support 1 b ¢
vector machine (LS-SVM) [12] are attractive because they al- BER = 9 { a+b + c+ d} '

low the construction of powerful non-linear classifiers, using

only relatively simple mathematical and computational tecMherea, b, c andd are entries in theonfusion matrixfor
niques. The model parameters of an LS-SVM are given by tRetwo-class pattern recognition problem, shown in Table I.
solution of a system of linear equations, which can be fourfelearly the balanced error rate only coincides with the more
efficiently via Cholesky factorisation. The generalisation pep:aditional misclassification rate if there are an equal number
formance of the LS-SVM is however, heavily dependent d?f Positive and negative examples, in which casé = c+d.

the model selectioprocess, in this case the careful selectiofowever, the relative class frequencies in the performance
of an appropriate kernel function and good values for t}mediction Challenge benchmarks are skewed in favour of
regularisation and kernel parameters. This paper is concerfi@@ negative class; in the case of th#VA and SYLVA
with model selection strategies based on minimisation of tRgnchmarks the ratios are skewed rather heavily in favour of
leave-one-out cross-validation estimate of a range of modBg negative class. We must therefore tailor our approach to
selection criteria, which can be performed very efficiently fakccount for the unequal weight assigned to false-negative and
this class of kernel learning methods. The aim of the wCclalse-positive errors in the performance assessment criterion.
2006 Performance Prediction Challenge (PPC) is to identifjnis can be accomplished via a number of means, including
accurate methods for predicting the performance of statisti@l€ering the bias parameters of the classifier or differentially
classifiers on unseen test data, for use in model selectdighting positive and negative examples during the training
and model evaluation. The challenge takes place over Ppgocedure. Both of these approaches are investigated in this
suite of five benchmark dataseSDA GINA, HIVA, NOVA study.

andSYLVA each having pre-defined training, validation and . .

test partitions. The final performance assessment is ba?edover":'ttlng in the Model Selection Process

on a combination of the Balanced Error Rate (BER) of Let G(0) represent the true test error of a classifier with
the classifier over the test partition and the accuracy parameter®), and g(€|D) an estimate of the true test error
the predicted balanced error rate generated by the mollaked on a sample of daf. In the context of model
selection procedure. A number of features of the performanselection, D, might refer to an independenglidation set,
prediction challenge warrant serious consideration, and anethe set of validation partitions arising in (leave-one-out)
discussed in the remainder of this section. cross-validation. The expected error of the estimator can be



broken down intdbias and variancecomponents [6], one-out cross-validation criteria oftelegradegeneralisation
) ) performance in the presence of a large number of features due
&p {[9(9;9) —G(0)] } = &p{9(6;D) — G(0)} to over-fitting of the model selection criterion. Fortunately,
+ & {[g(g; D) — &p{g(6; D)}]Z} !ea;t—sqqares §upport vector machines generally perform well
in high-dimensional spaces, due to the use of formal regular-
where the expectations are taken over all data sBts, isation [13], and so we are able to neglect a feature selection
of fixed size. The first term, the squarduias is low if stage in this study.

on average the difference between the true test error ancg) Model Selection versus Performance Predictidror
estimated error is small, i.e. the bias represents degreepttformance evaluation purposes, we require a criterion that
which the estimated erraystematicallyliffers from the true s poth unbiased and also exhibits a low variance. Leave-one-
test error. The second component, traiance essentially oyt cross-validation based estimators, while approximately
reflects the sensitivity of the estimator to the particulainbiased, are likely to be sub-optimal performance evaluation
choice of data over which it is evaluated. Note that th&iteria due to their high varianteHowever, in general, one
variance can normally be expected to fall as the size ofhould be cautious in using the same criterion for model
the sample of datap, increases. The leave-one-out crossselection and performance evaluation; any criterion that has
validation estimator is known to be approximately unbiasasken directly optimised during the model selection process
[8]. This is a reassuring, but not essential, property fora jikely to result in a significantly optimistic estimate of the

model selection criterion as it suggests thataveragethe true generalisation performance, due to the variance of the
vector of model parameters minimising the model selectigtimator.

criterion are approximately the same as those minimising the
true test error. However, the leave-one-out estimator generally
exhibits a higher variance than, for example, kafold cross- C- Reliability of Validation Set Statistics
validation estimator e.g. [7]. This is an undesirable property

of a model selection criterion as the “optimal’ parameter arks is such that the test set is approximately ten times

0.’ will bE.B sensitive to the sample of da_ta used. The relative erger than the training set, which in turn is approximately ten
high variance of the leave-one-out estimator has a number. 0 S . : -

S o . times larger than the validation set, with the ratio of positive
significant implications for the model selection process:

1) Over-fiting of the Model Selection CriteriorDuring and negative examples being closely matched in all three

. . . artitions of the available data. However, optimising the bal-
the model selection process, the paramefesse iteratively P P g

modified so as to minimise the value of the model selectit?nnced error rate on the validation set, so as to achieve a good

o . .. tanking in themodel developmerstage of the challenge, is a
criterion. However, the value of the model selection C”ter'oﬁsky strategy as the variance of the validationesttmateof

Cantt,)[ﬁ cf[qn5||dereld tolctcxrgp:rlse of tWIQ C?mponefnts, a Com%)(? test BER is likely to be high, due to the small size of the
nent that 1S closely refated 1o generaisation periormance, il tion set. In essence, this means it might be possible to
a component that is sensitive to the characteristics speci Ser-fit” the hyper-parameters of the model to the validation

B e 5 Wt b i i especiall e for VA benchmark,where
b 9 tne” validation set contains only 14 positive examples in

model selection C“te”o.” should cqme.from changes in tI?;l%ldition to the 370 negative examples. As the balanced error
parameters that result in a reduction in the true test err te is very sensitive to errors in the minority class, the
If the pumber of .parameters to be determlneq during mo \falidation set BER will be very sensitive to the sampling
selection is relatively small, the model selection process & these positive examples. If fourteen “clearly positive”

likely tq be_ dominated by changgs that genuinely ImIOrOVeeXampIes were chosen, the BER will be unrealistically low,
generalisation. On the other hand if the number of paramet?fr?ourteen “difficult’ examples were selected the BER will

Is relatively large, ther.e may be sufficient. Qegrees of fregd unduly high. As there are only fourteen positive patterns
that the model select!on be(':o_mes.sensnwe t'o the particu fther of these scenarios could easily occur, in which case
sample of data used, i.ever-fittingwill occur. It is therefore

dent t i th lecti fal ber of tthe validation set BER would be a poor predictor of the
prudentto avoid Ihe selection ot a large humber oTparamellz, cor ger I this study, we have therefore chosen to
on the basis of a model selection criterion, unless it is kno

o h | . VYQrger ignore the validation set performance, available from
0 have a low variance. the challenge web-site, in favour of estimators likely to have

2) Feature Selection:Many of the challenge datasetsa lower variance. It will be interesting to see, in hindsight,

are characterised by a large number of features relative\mether this was a good strategy at the conclusion of the
the number of training patterns. If feature selection wer

) . allenge!
performed as part of the model selection process, this woucl 9
vastly inflate the degrees of freedom available for over-
fitting the model selection criterion, as there is essentiall 1L eave-one-out cross—validatior) is typ_ically uged in the analysis of very
d f freed iated with h f all datasets, where the relatively high variance of the leave-one-out
an extra degree of freedom associated with each feature.elfinator is offset by the stability resulting from the greater size of the

practice, performing feature selection on the basis of leauerining partition than is possible using conventiohdbld cross-validation.

The design of the performance prediction challenge bench-



Il. METHOD B. Training Algorithm

In this section, we give a brief overview of the Least- The regularised least-squares problem (4) can be solved via
Squares Support Vector Machine (LS-SVM), including & system of linear equations, with a computational complexity
weighted variant suitable for the performance predictiopf O(¢%) operations, as follows: Minimising (4) can be recast
challenge, before going on to describe an efficient closeig-the form of a constrained optimisation problem,
form implementation of the leave-one-out cross-validation ¢
method for least-squares kernel learning methods. This forms min J = 1||w|‘2 + 1 Z £ (5)
the basis of a family of model selection procedures, based 2 2ep =1
on the Ieave—on_e—out_ cr(_)ss—validation estimates of a Vari%thject to
of model selection criteria.

yi =w - d(x;) + b+ ey, Vie{l,2,...,¢}. (6)
The primal Lagrangian for this optimisation problem gives
the unconstrained minimisation problem,

A. Least-Squares Support Vector Machines

Assume we are given labelled training dat®,
{(mi,yi)}le, wherexz; € X C R? is a vector of input , ,
features describing thé" example andy; € {—1,+1} is 1 1
an indicator variable such that = —1 if the {z'th exar}r}ple L= §”wH2+@ ZE?_ZO” {w-é(z:) +b+ei —vi},
is drawn from clas€~ andy; = +1 is drawn from class ==t
C*+. The Least-Squares Support Vector Machine (LS-SVMyherea = (ai, as, ..., ap) € R is a vector of Lagrange
aims to construct a linear mod¢l(x) = w - ¢(x) + b in a Multipliers. The optimality conditions for this problem can
fixed feature spacep : X — F, that is able to distinguish be expressed as follows:

between examples drawn frofT andC™*, such that ¢
o _ 0 = 7
ct if f(x) >0 o == w= Zai(ﬁ(ﬂ’/‘i) (7)
x € _ . . i=1
C otherwise ;
. . oL
However, rather than specifying the feature sp&ceéjrectly, B 0 = Z a; =0 (8)
it is implied by a kernel functiorlC : X x X — R, giving the i=1
inner product between the images of vectors in the feature ~ 9£ B )
space,F, i.e. K(z,z') = ¢(x) - ¢(z'). A common kernel Oz; Lo
function is the isotropic Radial Basis Function (RBF) kernel oL — 0 — wep(m)tbte—y =0 (10)
I 112 o
’C(CCJU)ZQXP{—W||CC_$H }a . ..
Using (7) and (9) to eliminatev ande = (e1,¢9,...,&¢),

wheren is a kernel parameter controlling the sensitivity ofrom (10), we find that
the kernel function. Other useful kernels include the linear,

4
K(z,z')=a-a ) > (@) - dlai) + b+ Lpei = yi. (11)
j=1
and polynomial kemels Noting thatXC(xz, z") = ¢(x) - ¢(x’), the system of linear
Kz, ') = (z ' + C)d A3) equations can be written more concisely in matrix form as
where ¢ and d are kernel parametersi (= 2 gives the [ KJ{TMI é } { (Z ] = { é } . (12)
quadratic kernel and = 3 the cubic kernel) in addition
to the Boolean kernel From (7) and noting tha(x, ') = ¢(x)-¢(x’), the output
, rox of the LS-SVM can be written in terms of thidual model
Kz, ') = (1+n)~. parameters(a, b), as
The model parameteraw, b) are given by the minimum of ¢
a regularised [13] least-squares loss function, f(x) = Zai/c(a;i, x) + b.
) 1=1
L= 1Hw||2 + 1 [y —w- ¢(z;) — >, (4) C. Efficient Implementation Via Cholesky Factorisation
2 2 i=1 A more efficient training algorithm can be obtained, taking

where 4 is a regularisation parameter controlling the biagidvantage of the special structure of the system of linear
variance trade-off [6]. The accuracy of an LS-SVM on tegtduations [12]. The system of linear equations (12) to be
data is critically dependent on the choice of good values f&plved in fitting a least-squares support vector machine can
the hyper-parametersn this case: ands. The search for the be written as

optimal values for such hyper-parameters is a process known [ M 1 ] [ o } B [ t }

asmodel selection 17 o1l » 0 (13)



where M = K + p/1. Unfortunately the matrix on the left- regularised loss function. In this case, the weighting factors
hand side is not positive definite, and so we cannot solghould be chosen according to

this system of linear equations directly using the Cholesky L — 1
factorisation. However, the first row of (13) can be re-written ¢ = 2 ’ (18)
as 7= otherwise
M (a + Mfllb) =y (14) where/* and /¢~ represent the number of positive and neg-

) 1 ) . ative examples respectively. Note that this is asymptotically
Rearranging (14), we see that= M ™" (y — 1b), using this g4 ivalent to re-sampling the data so that there are an equal
result to eliminater, the second row of (13) can be written,;mber of positive and negative examples (c.f. [4]).
as, . N
E. Efficient Leave-One-Out Cross-Validation

The optimal values of the parameters of a Least-Squares
The system of linear equations can then be re-written as Support Vector Machine are given by the solution of a system

1"TM1p=1"M1y (15)

1 of linear equations (12), the matrix on the left-hand side of
M- 0 o+ M1 y hich can be d d into block-matri tati
of 1TM-'1 b = | 1Ta1y which can be decomposed into block-matrix representation,
as follows:
In this case, the matrix on the left hand side is positive- K+l 1] [en ] C
definite, asM = K + /I is positive-definite and” M ~'1 17 0| | a Ci |

is positive since the inverse of a positive definite matrix iEet (=, 5(-9] represent the parameters of the least-

also positive definite. The revised system of linear equations ; N .
. squares support vector machine during He iteration of
can then be solved as follows: First solve

the leave-one-out cross-validation procedure, then in the first
Mn=1 and Mv =y, (16) iteration, in which the first training pattern is excluded,

a1 _
|: b(—l) :| = Cl ! [y27~ .. 7y€70]T

The leave-one-out prediction for the first training pattern is

The model parameters of the least-squares support vector
machine are then given by

1T .
b— 1T7V and o =v—nb then given by,
n (-1)
)=l | %) = O 0T
The two systems of linear equations (16) can be solved Y “ { ) } L Cr lys e )

efficiently using the Cholesky decompositionfef = R"R,  Considering the last equations in the system of linear
where R is the upper triangular Cholesky factor &f . equations (12), it is clear thde; Ci) [, ... ap, b7 =
T

[y2,-..,y¢,0]", and so

~(—1) _ T ~—1 T
For some applications, it may be preferable find the model Y1 = ¢/Ci'[er Ci][a")b
parametergw, b) via minimisation of a regularisedeighted = IClcrar +eias, ... a0 b]”
least-squares loss function [12],

D. Weighted Least-Squares Support Vector Machines "

Noting, from the first equation in the system of linear
equations (12), thag; = cy101 + ¢7 [, ..., o, b7, thus
(=1)

¢
Ll ST — N P2
L= 2”“’” + 2M€§Cz [yi —w - Pp(x;) — b7, g
dFinaIIy, via the block matrix inversion lemma,

=y — o (a1 — ClTCflcl)

where¢ = {(1, (2, ..., (¢} is a vector of weights associate
with each pattern. The optimal dual model parametexs,b) aLcu cf }_1 — { T e }
are then given by the solution of a modified system of linear ©* Ci 4r CricgaCr —rCrep ]V
equations, wherex = c11 — clTCflc, and noting that the system of
linear equations (12) is insensitive to permutations of the
} [ ‘Z } — [ g ] , (17) ordering of the equations and of the unknowns, we have that,
yi— g = (19)
where W = diag {(¢;, ¢ %---.¢ 1) }. The most com- Ci
mon situation in which a weighted loss function is usedlhis means that, assuming the system of linear equations
is where the proportions of positive and negative examplassolved via explicit inversion o€, a leave-one-out cross-
in the training data are known not to be representative wadlidation estimate of an appropriate model selection criterion
the operational class frequencies. A weighted loss functiocan be evaluated using information already available as a by-
is also appropriate if we wish to minimise the balanceproduct of training the least-squares support vector machine
error rate, in order to balance the contribution of the sets of the entire dataset, with only a negligible additional com-
positive and negative examples to the data misfit term of tpetational expense.

K+ w1
17 0

rl(_i) =



F. Efficient Implementation via Cholesky Factorisation However the PRESS statistic is best suited to regression prob-

The coefficients of the kernel expansia®, can be found 'eéms, and more sophisticated model selection criterion may
efficiently, via Cholesky factorisation, as described in sebe preferable in the context of statistical pattern recognition.
tion 11-C. However, in order to perform the efficient leavefor instance, the leave-one-out cross-validation estimate of
one-out cross-validation procedure, we must also determif¢ Weighted error rate is given by
the diagonal elements &' in an efficient manner. Using

4
the block matrix inversion formula, we obtain ERROR(0) = Y (¥ {tirg_i) - 1}
oo [ M7 MTIS UM M LSy i=1
B -8y 1Mt Syt * where¥{-} is the unit step function,
where M = K + /I and Sy, = -1"M'1 = -1Tn is U {a) = 1 ifx>=0
the Schur complement oM. The inverse of the positive 0 otherwise

definite matrix, M, can be computed efficiently from itSrpq oave-one-out estimate of the balanced error rate (BER)

Cholesky facto_risation, via théYMINV algorithm [11], is obtained by setting the weighting coefficients to give equal
for example using the LAPACK routin®TRTRI [2]. Let weight to the sets of positive and negative examples, that

R = [ri]; ;—, be the lower triangular Cholesky factcT)r ofis according to (18). The leave-one-out balanced error rate

the positive definite matrixM, such thatM = RR". ought to provide a good model selection criterion for the
Furthermore, let performance prediction challenge as the balanced error rate
S=[s;]' =R over the test set forms the major component of the fi_nal rank-

= ing criterion. However, while the leave-one-out estimate of
where the BER provides a reasonable performance estimate for the
i—1 purposes of the challenge, it is not entirely suitable for model

Sip = — and Sij = —Sii Z TikSkjs selectionpurposes, as we would prefer a continuous function

k=1 that is more amenable to numerical optimisation routines.

represent the (lower triangular) inverse of the Choleskyne approach would be to approximate the discontinuous
factor. The inverse of\f is then given byM ! = ST§. unit step function by a continuous approximation, such as

In the case of efficient leave-one-out cross-validation #fe logistic function [3],

least-squares support vector machines, we are principally _ 1
. . —1 . Ulxpl = —_—, 20
E;ncerned only with the diagonal elements/™", given {z} 1+ oxp{—z} (20)
: ; where~ is a parameter governing the accuracy of the approxi-
2 . .
-1 2 -1 2 M mation. Alternatively, we may opt for an upper bound on the
M= Z;sij - Cii' = Z;S” + S balanced error rate, obtained by substituting the weighted
= _ = _ hinge loss for the step function,
The computational complexity of the basic training algorithm ,
is O(¢) operations, being dominated by the evaluation of the (—i)
Cholesky factor. However, the computational complexity of HINGE(®) = ZQ [tiri } "
the analytic leave-one-out cross-validation procedure, when _ .‘:1
performed as a by-product of the training algorithm, i8f the weighted squared hinge loss,
only O(¢) operations. The computational expense of the ¢ )
leave-one-out cross-validation procedure therefore becomes HINGEQ(Q) — ZQ [mE‘”}
increasingly negligible as the training set becomes larger. i—1 +
G. Model Selection Criteria where[z], = max{0,z} (see Figure 1). A final model selec-

While the optimal model parameters of the LS-SVM grlion criterion is concerned only with the quality of the relative
given by the solution of a simple system of linear equation@"King of patterns under leave-one-out cross-validation, via
(12) or (17), some form of model selection is required to d&iaximising the area under the receiver operatlpg c'haracter-
termine good values for theyper-parametersd = (4, 1) in |st|C_(_AUC)_. Equivalently, one could mstea(_j minimise the
order to maximise generalisation performance. The analyfRedifiedWilcoxon-Mann-Whitney [9, 14] statistic,

leave-one-out cross-validation procedure described in the pre: 1 (=) A(—)
vious section can easily form the basis of an efficient modeIWMW(G) A Z , Z v {yl —Y } ’
selection strategy [5] based on a weighted version of Allen’s Eyi=tl gy =—1

predicted residual sum-of-squares (PRESS) statistic [1], where again, the smooth approximation to the step function
’ ) (20) can be employed to obtain a continuous selection

PRESS(9) = ZQ’ {rl(’i)} ) criterion. The hyper_-pgrameters _of the (yveighted) LS-SVM,

Py 6, can then be optimised by minimisation of any of these



model selection criteria via, for example, the Nelder-Meaitaining set using features never associated with the positive
simplex [10] method, as implemented by timinsearch class.
routines of the MATLAB Optimisation Toolbox.

IV. RESULTS

.
21| ——zero-one

vgf| ~hinge The aim of this study is to evaluate a range of criteria
hinge R for leave-one-out cross-validation based model selection of
’ weighted least-squares support vector machines. A 100-fold
validation approach was used in order to obtain a low-
. variance estimator of the true test balanced error rate. In each
u ’7 of 100 trials, the data are randomly partitioned into a training
0.8 ] set containing approximately 90% of the available data and a
0.6r ] test set containing the remaining patterns. Model selection is
041 1 performed independently in each trial via minimisation of a
0.2r ] leave-one-out model selection criterion via the Nelder-Mead
P simplex optimisation method [10]. A total of 70 experiments
-1 05 0 05 1 15 2 were performed, based on different combinations of model
tm(*i) selection criteria, kernel function and the use of weighting
factors in the training and/or model selection procedures. The
Fig. 1. The hinge and squared hinge loss bounds on the zero-one loggsults of these experiments are shown in Table Ill. The best
performance on each benchmark are shown in bold.
Table IV shows the weights resulting from a regression
analysis of the data given in Table Ill. The 100-fold validation
Table Il shows summary information on each of the fivestimates of the test balanced error rate were standardised
challenge benchmark datasets. The class ratios foftd@ to have a zero mean and unit variance. A linear least-
and SYLVAbenchmarks are highly skewed, with a very lovsquares model was then used to predict the estimate of the
prior probability for the positive clas®(C,). The GINA, test balanced error rate using boolean features representing
HIVA and especially theNOVAbenchmarks also have athe choice of model selection criterion (PRESS, HINGE
very large number of features, given the number of trainifgINGE?, WMW and ERATE), the use of weighting factors
examples. Note however that the number of features that halring training and model selection (Training and Selection
a non-zero variance over the training sgl,, is significantly respectively) and the choice of kernel function (Linear,
less than the total number of features. Obviously features tifaadratic, Cubic, Boolean and RBF). The results suggest
have zero variance over the training set are uninformatitleat the use of weighting factors in training and/or model
and can safely be omitted from the analysis. Many of theelection does not confer a significant advantage and that,
benchmarks also include a large number of binary featuressurprisingly, the choice of kernel is data dependent. The
with a high degree of sparsity. choice of model selection criterion also seems data depen-
dent, but that relatively good performance can be achieved

1.6r
1.4¢
1.2r

I1l. THE CHALLENGE BENCHMARK DATASETS

TABLE Il using the simple PRESS statistic, even though this is better
SUMMARY OF THE DIMENSIONS AND COMPOSITION OF THE FIVE suited to regression problems, obviating the need to employ
CHALLENGE BENCHMARK DATASETS. a more Complex Criteria.

| [ ADA [ GINA | HIVA | NOVA| SYLVA| Three final submissions have been made to the WCCI-

o Tozo | 1020 | 1= 299 805 2006 pgrformance predlc_tlon challenge website. The first,

- 3118 | 1603 | 3710 | 1255 | 12281 shown in Table V, consists (_)f models selected for e_ach
PCy) | 0248 | 0.492 | 0.035 | 0285 | 0062 benchmark dataset on the baS|§ of Fhe leave-one-out esﬂmate

d . 970 | 1617 | 16969 | 216 of the balanced.error rate,.wh|ch is also used as the final
do 46 970 | 1617 | 12308 | 211 performance esnmat_e. In this case, it would be r'easonable to

sparsity | 72.1% | 0.0% | 91.8% | 98.1% | 76.7% expect that the predicted balanced error rate will be unduly
low as the estimator has also been used as the model selection

criterion.

The following pre-processing steps were taken for eachTable VI shows the second final submission. In this
benchmark datase&DA - logarithmic transform of features case the final model choice is based on the leave-one-out
1 and 3, features 4 and 5 discretized via thresholding @bss-validation estimate of the balanced error rate, but the
44 and respectively, standardisation of continuous featuregerformance estimate is based on an independent 100-fold
GINA - all features scaled by@55~'. HIVA - no pre- validation estimate. This represents, in the author’s opinion,
processing requiredNOVA- no pre-processing required.the best practice methodology as the performance estimate
SYLVA- standardisation of continuous features, reduction bfs not been biased by the model selection process in any



ESTIMATE OF THE TESTBALANCED ERRORRATE BASED ON 100+0LD VALIDATION FOR THE WCCI-2006PERFORMANCE PREDICTION CHALLENGE

TABLE Il

BENCHMARKS FOR A VARIETY OF LEAVE-ONE-OUT CROSSVALIDATION BASED MODEL SELECTION CRITERIA.

Experiment Selection Weighted Weighted Kernel ADA GINA HIVA NOVA SYLVA
Criterion Training Selection
01 PRESS no no Linear 0.1766 0.1366 0.2727 0.0524 0.0156
02 PRESS no no Quadratic 0.1687 0.0562 0.2769 0.0574 0.0098
03 PRESS no no Cubic 0.1701 0.0482 0.2549 0.0653 0.0100
04 PRESS no no Boolean 0.1649 0.0550 0.2622 0.0669 0.1155
05 PRESS no no RBF 0.1676 0.0542 0.2530 0.0700 0.1160
06 PRESS yes no Linear 0.1740 0.1360 0.2724 0.0532 0.0124
07 PRESS yes no Quadratic 0.1740 0.0562 0.2848 0.0551 0.0101
08 PRESS yes no Cubic 0.1685 0.0481 0.2658 0.0643 0.0102
09 PRESS yes no Boolean 0.1763 0.0560 0.2654 0.0686 0.1151
10 PRESS yes no RBF 0.1754 0.0533 0.2754 0.0664 0.1.15
11 PRESS yes yes Linear 0.1757 0.1354 0.2830 0.0506 0.0236
12 PRESS yes yes Quadratic 0.1691 0.0550 0.2965 0.0536 0.0098
13 PRESS yes yes Cubic 0.1681 0.0499 0.2654 0.0627 0.0106
14 PRESS yes yes Boolean 0.1736 0.0528 0.2828 0.0663 0.1153
15 PRESS yes yes RBF 0.1670 0.0533 0.2972 0.0670 0.1148
16 HINGE! no no Linear 0.1880 0.1366 0.2906 0.0753 0.0670
17 HINGE! no no Quadratic 0.1721 0.0593 0.2741 0.0828 0.0106
18 HINGE! no no Cubic 0.1725 0.0515 0.2551 0.0794 0.0099
19 HINGE! no no Boolean 0.1723 0.0557 0.2563 0.0938 0.1150
20 HINGE! no no RBF 0.1751 0.0560 0.2677 0.0897 0.1153
21 HINGE! yes no Linear 0.1876 0.1398 0.2824 0.0688 0.0477
22 HINGE! yes no Quadratic 0.1765 0.0547 0.2740 0.0796 0.0115
23 HINGE! yes no Cubic 0.1737 0.0494 0.2549 0.0815 0.0099
24 HINGE! yes no Boolean 0.1976 0.0540 0.2615 0.0887 0.1159
25 HINGE! yes no RBF 0.1972 0.0560 0.2817 0.0954 0.1152
26 HINGE! yes yes Linear 0.1974 0.1373 0.2699 0.0567 0.0721
27 HINGE! yes yes Quadratic 0.1699 0.0550 0.2757 0.0706 0.0100
28 HINGE! yes yes Cubic 0.1738 0.0497 0.2784 0.0820 0.0107
29 HINGE! yes yes Boolean 0.1733 0.0527 0.2753 0.0835 0.1155
30 HINGE! yes yes RBF 0.1716 0.0548 0.2693 0.0829 0.1153
31 HINGE? no no Linear 0.1783 0.1347 0.2670 0.0546 0.0155
32 HINGE? no no Quadratic 0.1667 0.0562 0.2628 0.0600 0.0114
33 HINGE? no no Cubic 0.1701 0.0491 0.2581 0.0663 0.0094
34 HINGE? no no Boolean 0.1689 0.0562 0.2603 0.0738 0.1152
35 HINGE? no no RBF 0.1686 0.0517 0.2613 0.0720 0.1150
36 HINGE? yes no Linear 0.1801 0.1343 0.2723 0.0557 0.0130
37 HINGE? yes no Quadratic 0.1667 0.0538 0.2689 0.0559 0.0107
38 HINGE? yes no Cubic 0.1661 0.0504 0.2639 0.0645 0.0103
39 HINGE? yes no Boolean 0.1929 0.0538 0.2649 0.0873 0.1153
40 HINGE? yes no RBF 0.1818 0.0539 0.2767 0.0677 0.1152
41 HINGE? yes yes Linear 0.1747 0.1362 0.2797 0.0488 0.0275
42 HINGE? yes yes Quadratic 0.1694 0.0556 0.2863 0.0524 0.0101
43 HINGE? yes yes Cubic 0.1670 0.0522 0.2588 0.0626 0.0096
44 HINGE? yes yes Boolean 0.1717 0.0523 0.2936 0.0680 0.1149
45 HINGE? yes yes RBF 0.1681 0.0531 0.2860 0.0667 0.1153
46 WMW no no Linear 0.1691 0.1366 0.2749 0.0502 0.0109
47 WMW no no Quadratic 0.1700 0.0549 0.2621 0.0485 0.0091
48 WMW no no Cubic 0.1688 0.0517 0.2786 0.0584 0.0102
49 WMW no no Boolean 0.1672 0.0526 0.2660 0.0633 0.1167
50 WMW no no RBF 0.1692 0.0544 0.2675 0.0666 0.1152
51 WMW yes no Linear 0.1769 0.1384 0.2740 0.0509 0.0122
52 WMW yes no Quadratic 0.1727 0.0543 0.2632 0.0447 0.0095
53 WMW yes no Cubic 0.1675 0.0497 0.2784 0.0606 0.0097
54 WMW yes no Boolean 0.1746 0.0543 0.2638 0.0612 0.1159
55 WMW yes no RBF 0.1714 0.0536 0.2735 0.0614 0.1160
56 ERATE no no Linear 0.1748 0.1346 0.2745 0.0537 0.0112
57 ERATE no no Quadratic 0.1681 0.0542 0.2627 0.0522 0.0096
58 ERATE no no Cubic 0.1682 0.0503 0.2665 0.0590 0.0107
59 ERATE no no Boolean 0.1709 0.0529 0.2571 0.0701 0.1159
60 ERATE no no RBF 0.1685 0.0525 0.2711 0.0723 0.1157
61 ERATE yes no Linear 0.1821 0.1339 0.2735 0.0534 0.0844
62 ERATE yes no Quadratic 0.1689 0.0560 0.2839 0.0514 0.0115
63 ERATE yes no Cubic 0.1716 0.0484 0.2624 0.0640 0.0106
64 ERATE yes no Boolean 0.1827 0.0540 0.2628 0.0640 0.1160
65 ERATE yes no RBF 0.1824 0.0527 0.2797 0.0657 0.1155
66 ERATE yes yes Linear 0.1765 0.1329 0.2745 0.0515 0.0116
67 ERATE yes yes Quadratic 0.1728 0.0529 0.2742 0.0542 0.0095
68 ERATE yes yes Cubic 0.1684 0.0495 0.2740 0.0635 0.0101
69 ERATE yes yes Boolean 0.1721 0.0532 0.2807 0.0639 0.1148
70 ERATE yes yes RBF 0.1710 0.0525 0.2787 0.0652 0.1159




TABLE IV
WEIGHTS OBTAINED BY REGRESSION ANALYSIS OFLOO-FOLD
VALIDATION ESTIMATE OF THE TEST BALANCED ERROR RATE

Factor ADA GINA HIVA NOVA | SYLVA ‘
PRESS -0.4729 | +0.0049 | -0.1077 | -0.2036 | -0.0615
HINGE ! +0.6871 | +0.0375| -0.3774 | +1.4446| +0.1203
HINGE 2 -0.2796 | -0.0005 | -0.4189 | +0.0037 | -0.0554
WMW -0.6645 | +0.0082 | -0.1184 | -0.7283 | -0.0830
ERATE -0.2087 | -0.0265 | -0.3169 | -0.2913 | +0.0165
Training +0.8832 | -0.0085 | +0.4943 | -0.0806 | +0.0420
Selection -0.7922 | -0.0132 | +0.8001 | -0.3271 | -0.0236
Linear +0.5679 | +1.9856 | +0.1422 | -0.7780 | -0.5275
Quadratic | -0.6471 | -0.4272 | +0.0343 | -0.5183 | -0.9257
Cubic -0.7513 | -0.5911 | -0.8821 | +0.1824 | -0.9274
Boolean +0.0629 | -0.4682 | -0.6189 | +0.7011 | +1.1598
RBF -0.1711 | -0.4754 | -0.0149 | +0.6379 | +1.1577
TABLE V

PERFORMANCE OF THE FIRST FINAL SUBMISSIONMODEL CHOICE AND
PERFORMANCE ESTIMATION BASED ON LEAVEONE-OUT BER.

Balanced Error Guess Test

Dataset . ) Guess

Train l Valid l Test Error Score
ADA 0.1490 | 0.1542 | 0.1845 | 0.1683 | 0.0162 | 0.2007
GINA 0.0000 | 0.0000 | 0.0461 | 0.0434 | 0.0027 | 0.0485
HIVA 0.0180 | 0.0216 | 0.2804 | 0.2475 | 0.0329 | 0.3131
NOVA 0.0000 | 0.0000 | 0.0445 | 0.0436 | 0.0009 | 0.0448
SYLVA 0.0028 | 0.0029 | 0.0067 | 0.0048 | 0.0018 | 0.0085

[ Overall | 0.0340 [ 0.0357 |

0.1124 | 0.1105 | 0.0034 [ 0.1152 |

way. Note that the guess error for this method is very much

lower.

TABLE VI
SECOND FINAL SUBMISSION, MODEL CHOICE VIA LEAVE-ONE-OUT
BER, PERFORMANCE ESTIMATION VIA100-FOLD VALIDATION BER.

Balanced Error Guess Test

Dataset . ) Guess

Train l Valid l Test Error Score
ADA 0.1490 | 0.1542 | 0.1845 | 0.1742 | 0.0103 | 0.1947
GINA 0.0000 | 0.0000 | 0.0461 | 0.0470 | 0.0009 | 0.0466
HIVA 0.0180 | 0.0216 | 0.2804 | 0.2776 | 0.0028 | 0.2814
NOVA 0.0000 | 0.0000 | 0.0445 | 0.0470 | 0.0025 | 0.0464
SYLVA 0.0028 | 0.0029 | 0.0067 | 0.0065 | 0.0002 | 0.0067

Overall | 0.0340 | 0.0357 |

0.1124 [ 0.1105 |

0.0034 | 0.1152 |

V. CONCLUSIONS

PRESS statistic. This study generated the joint winning entry
in the challenge, finishing first in terms of average score and
second in terms of average ranking. The best model also
exhibited the second highest area under the receiver operat-
ing characteristic on the test set. The study also generated
two individual data set winnersH{VA and NOVA. This
demonstrates that leave-one-out cross-validation provides an
effective means of model selection for least-squares support
vector machines, but that an external means of performance
estimation is required. If performance evaluation is performed
using cross-validation, it is important that the model selection
process is performed separately in each trial in order to avoid
selection bias.
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