
Sparse Bayesian Learning and the Relevance
Multi-Layer Perceptron Network

Gavin C. Cawley
School of Computing Sciences

University of East Anglia
Norwich NR4 7TJ U.K.

E-mail: gcc@cmp.uea.ac.uk

Nicola L. C. Talbot
School of Computing Sciences

University of East Anglia
Norwich NR4 7TJ U.K.

E-mail: nlct@cmp.uea.ac.uk

Abstract— We introduce a simple framework for sparse
Bayesian learning with Multi-Layer Perceptron (MLP) networks,
inspired by Tipping’s Relevance Vector Machine (RVM). Like the
RVM, a Bayesian prior is adopted that includes separate hyper-
parameters for each weight, allowing redundant weights and
hidden layer units to be identified and subsequently pruned from
the network, whilst also providing a means to avoid over-fitting
the training data. This approach is also more easily implemented,
as only the diagonal elements of the Hessian matrix are used in
the update formula for the regularisation parameters, rather than
the traces of square sub-matrices of the Hessian corresponding
to the weights associated with each regularisation parameter.
The proposed Relevance Multi-Layer Perceptron (RMLP) is
evaluated over several publicly available benchmark datasets,
demonstrating the viability of the approach, giving rise to similar
generalisation performance, but with far fewer weights.

I. I NTRODUCTION

Over-fitting of the training data is perhaps the most im-
portant issue to be addressed in applying flexible non-linear
models, such as the multi-layer perceptron network. Struc-
tural stabilisation and formal regularisation are the two most
commonly adopted approaches taken to avoid over-fitting in
modern applications of artificial neural networks. Structural
stabilisation aims to control the complexity of a neural network
model by limiting the number of weights and/or hidden
layer neurons comprising the model. Structural stabilisation
is often implemented via constructive methods; starting with
a small network, weights and/or hidden layer neurons are
incrementally added to the network until some estimate of
generalisation performance ceases to improve. Alternatively
structural stabilisation can be achieved through pruning re-
dundant weights and/or hidden units from an initially large
network, according to some measure of the saliency of each
weight in minimising the training criterion. Formal regularisa-
tion [1], on the other hand, seeks to control the complexity of
the model by adding a term to the training criterion expected
to penalise more complex models,

L = ED + αEW , (1)

whereα is a regularisation parameter, controlling the relative
importance of the original training criterion,ED, and the
regularisation term,EW . Matching the complexity of the
model to the difficulty of the learning task [2], then becomes a

matter of finding the optimal value for the scalar regularisation
parameterα. In practise, it is common to assign each weights
into one of a set ofC disjoint regularisation classes, each with
controlled by its own regularisation parameter,

L = ED +
C∑

i=1

αiE
i
W . (2)

This allows, for instance, individual control of the regularisa-
tion of weights in different layers of a multi-layer perceptron
network.

The regularised training criteria (1) and (2) admit a Bayesian
interpretation, whereED represents the negative logarithm of
the likelihood of the data, given the model, andEW represents
the negative logarithm of a prior over the model parameters [3,
4]. Theevidenceframework [5–7] is a practical Bayesian train-
ing algorithm for multi-layer perceptron networks. The evi-
dence framework provides a means of estimating appropriate
values for the regularisation parameters, using only the training
data, through maximisation of their marginal likelihood. In
this paper we apply the evidence framework to multi-layer
perceptron networks where the weight-decay regularisation
term contains a separate regularisation parameter for each
weight, e.g.

L = ED +
W∑
i=1

αiw
2
i . (3)

The benefit of this approach is that the regularisation parameter
for any weight that does not usefully contribute to reducing
the data misfit becomes large, forcing the value of the cor-
responding weight to zero, enabling it to be pruned from the
network. Over-fitting is then avoided via a combination of both
formal regularisationand structural stabilisation. We name
this method the Relevance Multi-Layer Perceptron (RMLP)
network in deference to the Relevance Vector Machine (RVM)
[8], which could be considered as applying a similar approach
to the Radial Basis Function (RBF) network.

II. M ETHOD

For ease of exposition, this paper is concerned only with the
solution of two-class pattern recognition problems using multi-
layer perceptron networks [9], with two layers of modifiable
weights, although the methods introduced are applicable to



arbitrarily complex feed-forward network structures and can
also be applied in the context of regression. For two-class
pattern recognition, with a logistic activation function in the
output neuron, the output of the network is given by,

f(x;w) =
1

1− exp{z(x;w)}
,

where

z(x;w) =
M∑
i=1

ŵi tanh

 d∑
j=1

wij + wi0

 + ŵ0.

Given labelled training data,D = {(xi, ti)}N
i=1 , xi ∈

Rd, ti ∈ (0, 1), the weights of the neural network are
determined by minimising a regularised [1] loss function,

L(w;α) = ED + αEW , (4)

whereED measures the data misfit,EW is the regularisation
term, andα is a regularisation parameter governing the bias-
variance trade-off [2]. In the case of two-class pattern recog-
nition, assuming the target data are drawn independently from
a Bernoulli distribution conditioned on the input data, it is
appropriate to measure the data misfit using the cross-entropy
error metric,

ED = −
∑̀
i=1

{ti log yi + (1− ti) log(1− yi)} , (5)

where yi = f(xi;w). The output of the network can then
be interpreted as a consistent estimate of thea-posteriori
probability of class membership, i.e.f(x) ≈ p(t = 1|x).
The most common form of regularisation is known as “weight
decay”, where

EW =
N∑

i=1

w2
i . (6)

In the remainder of this section, we provide an overview of
Bayesian training of multilayer perceptron networks under the
evidence framework [5–7], before discussing the advantages
and disadvantages of different regularisation terms.

A. Bayesian Learning within the Evidence Framework

In this section, we briefly summarise the Bayesian methods
introduced by MacKay [5–7], based on the lucid exposition
provided by Bishop [9]. Minimising the criterion given in
equation (4) is equivalent to maximising the posterior distri-
bution

p(w|D) =
p(D|w)p(w|α)

p(D)
, (7)

where the likelihood is given by the Bernoulli distribution,

p(D|w) =
∏̀
i=1

yti
i [1− yi](1−ti),

and the prior over model parameters by a multivariate Gaus-
sian distribution,

p(w;α) =
[ α

2π

]W/2

exp
{
−α

2
‖w‖2

}
,

whereW is the number of weights. The Taylor expansion of
L(w, α) around the most probable value,wMP, gives rise to
familiar Gaussian approximation to the posterior distribution,
known as the “Laplace approximation”,

p(w|D) ≈ 1
Z∗

exp
{
−L

(
wMP

)
− 1

2
∆wT A∆w

}
, (8)

where Z∗ is an appropriate normalising constant,∆w =
w − wMP and A = ∇∇L(w;α) = ∇∇ED + αI is the
Hessian ofL(w;α) with respect tow, evaluated atwMP. The
posterior distribution over the model parameters describes the
uncertainty in estimating the model parameters from a finite set
of training patterns. The Bayesian approach seeks to integrate
out the model parameters when making inferences in order to
account for the uncertainty in estimating the model parameters,
such that

p(t = 1|x,D) =
∫

p(t = 1|x,w)p(w|D)dw.

This process is known asmarginalisation. As z(x;w) is
a linear function of the model parameters,w, the Laplace
approximation implies thatz(x;w) also has a Gaussian dis-
tribution, centred on the most probable value,zMP,

p(z|x,D) =
1√
2πs

exp
{
− (z − zMP)2

2s2

}
,

with variances2 = gT A−1g, whereg is the first derivative
of z, with respect tow, evaluated atwMP. Rather than
marginalise overβ, we may equivalently marginalise overa,
the probability that a pattern,x, belongs to class for which
t = 1 can then be written as

p(t = 1|x,D) =
∫

p(C1|z)p(z|x,D)dz

=
∫

g(z)p(z|x,D)dz, (9)

whereg(z) = 1/[1 + exp(−z)]. The integral (9) is not ana-
lytically tractable, and so MacKay [7] suggests the following
approximation,

p(t = 1;x,D) ≈ g(κ(s)zMP),

where

κ(s) =
(

1 +
πs2

8

)− 1
2

.

The process of marginalisation can alternatively be imple-
mented more accurately via Markov Chain Monte Carlo
(MCMC) methods [10, 11].

The evidence approximation of [5–7] assumes that the pos-
terior distribution for the regularisation parameter,p(α|D), is
sharply peaked about its most probable value,αMP, suggesting
the following approximation to the posterior distribution for
w,

p(w|D) =
∫

p(w|α,D)p(α|D)dα ≈ p(w|αMP,D).

Thus, rather than integrate out the regularisation parameter
entirely (e.g. Buntine and Weigend [3, 4]), we simply proceed



with the analysis using the regularisation parameter fixed at
its most likely value. For a discussion of the validity of this
approach, see MacKay [12]. We seek therefore to maximise
the posterior distribution,

p(α|D) =
p(D|α)p(α)

p(D)
.

If the prior, p(α) is relatively insensitive to the valueα,
then maximising the posterior is approximately equivalent
to maximising the likelihood term,p(D|α), known as the
evidencefor α. Adopting the Gaussian approximation to the
posterior for the model parameters, the log-evidence is given
by

log p(D|α) = −EMP
D −αEMP

W − 1
2

log |A|+ W

2
log α. (10)

Noting thatA = H+αI, whereH is the Hessian ofED with
respect tow, if the eigenvalues ofH areλ1, λ2, . . . , λW , then
the eigenvalues ofA are (λ1 + α), (λ2 + α), . . . , (λW + α).
The derivative oflog |A| with respect toα (assuming that the
eigenvalues ofH are independent ofα) is then given by

d

dα
log |A| = d

dα
log

{
W∏
i=1

(λi + α)

}
=

W∑
i=1

1
λi + α

.

Setting the derivative of the log-evidence with respect toα to
zero, we have

2αEMP
W = W −

W∑
i=1

µ

λi + α
=

W∑
i=1

λi

λi + α
= γ,

where γ is the number of well determined parameters in
the model. This leads to a simple update formula for the
regularisation parameter:

αnew =
γ

2EMP
W

. (11)

The training procedure then alternates between updates of
the primary model parametersw using, for instance, the
method of scaled conjugate gradient descent, and updates of
the regularisation parameter,α, according to equation (11).

B. Choice of Regularisation Term

Assuming the use of a simple weight-decay regularisation
term, the simplest form for the regularised loss is given by,

L(w;α) = ED + α
W∑
i=1

w2
i .

The regularisation parameter,α, essentially controls the aver-
agescaleof the weights; ifα is large, then the weights will
on average be small, ifα is small, then the weights are free to
become large in the interests of minimising the data misfitED.
It is difficult to find a convincing argument why the average
scale of the weights should be the same in different parts of the
network. As a result it is common to assign groups of related

weights into one of a number ofregularisation classes(e.g.
[4]), each governed by a separate regularisation parameter,

L(w;α) = ED +
C∑

i=1

αi

Wi∑
j=1

[
wi

j

]2
.

whereC is the number of regularisation classes andWi is the
number of weights in theith class. A common arrangement
has one class comprising all input-to-hidden layer weights, and
separate regularisation classes for the weights associated with
each output unit. Again the vector of regularisation parameters
can be updated under the evidence framework, except the
number of well defined weights in each regularisation class
is computed from the trace of a square sub-matrix of the
inverse of the Hessian associated with those weights. A more
complex arrangement, known as an Automatic Relevance De-
termination (ARD) prior [13] also places weights originating
from each input unit into different regularisation classes. It has
been observed that if an input feature does not significantly
contribute to minimising the data misfit term, the evidence
framework will set the regularisation parameter for the cor-
responding regularisation class to a very large value. This in
turn will lead to the weights from the redundant input feature
being forced to values close zero, and the corresponding input
unit can be pruned from the network.

The Relevance Vector Machine (RVM) [8] can be viewed as
a Radial Basis Function (RBF) network, with a basis function
centred on each training pattern, minimising a regularised loss
function imposing an ARD prior over the weights. As a result,
the RVM is able to form a parsimonious model, comprised
of basis functions centred on only a small fraction of the
training patterns. In this paper, taking our inspiration from the
relevance vector machine, we propose a regularisation term
where each weight is assigned its own regularisation class,

L(w;α) = ED +
W∑
i=1

αiw
2
i ,

and so there is one regularisation parameter for each weight.
This arrangement has the advantage that individual redundant
weights can easily be identified and pruned from the network
(and by extension redundant hidden layer units and input
features). This approach is also particularly easy to implement,
if the diagonal approximation to the Hessian is adopted, only
the diagonal elements need by evaluated in order to update the
regularisation parameters, and the computation of the trace
also becomes trivial (as the sub-matrices involved are now
scalars). The disadvantage of this approach is that we must
now estimate the number of very many more regularisation
parameters, and so may need many more iterations until
convergence. We refer to this arrangement as a Relevance
Multi-Layer Perceptron (RMLP) in deference to the RVM.

III. R ESULTS

The relevance and conventional multi-layer perceptron net-
works were evaluated over a suite of seven well known real-
world and synthetic benchmark datasets [14, 15]. The con-
ventional and relevance multi-layer perceptron networks were



implemented in the MATLAB programming environment,
using the NETLAB1 toolbox [16]. As the training criteria
for multi-layer perceptron networks typically exhibit many
sub-optimal local minima, twenty networks were trained on
each benchmark with random initialisation of the weights. The
networks contained a single hidden layer, initially comprised
of sixteen units. For all datasets, the regularisation parameters
were updated at most 30 times, the weights being optimised
via at most 100 iterations of scaled conjugate gradient de-
scent between each update. The weights of the conventional
Bayesian multi-layer perceptron (BMLP) networks were ar-
ranged into two regularisation classes, the first comprised of
the input-to-hidden layer weights, and the second comprised
of the weights feeding the lone output layer unit. The weights
of the relevance multi-layer perceptron were pruned from the
network if the value ofγ for that weight fell below1−6.

TABLE I

MEAN ERROR RATE FORBAYESIAN (BMLP) AND RELEVANCE (RMLP)

MULTI -LAYER PERCEPTRON NETWORKS OVER20 REPLICATES.

Benchmark BMLP RMLP

Breast cancer 28.96%± 0.17 27.47%± 0.34
Diabetis 24.83%± 0.15 24.61%± 0.16
Heart 19.00%± 0.00 19.15%± 0.11
Pima 20.54%± 0.04 20.53%± 0.06
Synthetic 9.71%± 0.01 9.44%± 0.02
Thyroid 2.67%± 0.00 2.67%± 0.00
Titanic 21.84%± 0.00 22.57%± 0.00

Table I shows the mean test set error rate over the 20
replicates for conventional Bayesian (BMLP) and relevance
(RMLP) multi-layer perceptron networks, along with asso-
ciates standard error of the mean. The performance of the
BMLP and RMLP are generally similar, with the BMLP on
average performing best on two datasets and the RMLP best on
four with one tie. The differences in performance are however
generally quite small and unlikely to be statistically significant.

TABLE II

MEAN NUMBER OF WELL-DEFINED WEIGHTS FORBAYESIAN (BMLP)

AND RELEVANCE (RMLP) MULTI -LAYER PERCEPTRON NETWORKS OVER

20 REPLICATES.

Benchmark BMLP RMLP

Breast cancer 33.96± 7.19 7.83± 0.58
Diabetis 71.24± 0.72 37.31± 1.21
Heart 27.02± 0.06 7.43± 0.16
Pima 19.11± 0.04 8.06± 0.11
Synthetic 43.71± 1.94 5.33± 0.11
Thyroid 21.71± 0.00 9.12± 0.11
Titanic 13.84± 0.00 3.83± 0.04

Table II shows the mean number of well defined weights
of trained Bayesian and relevance multi-layer perceptron net-
works, and the associated standard error of the mean, over the

1Available fromhttp://www.ncrg.aston.ac.uk/netlab/ . Addi-
tional functions implementing the RMLP will be made available from the
author’s web site.

twenty replicates performed for each benchmark. It is clear
that the regularisation term involved in the relevance multi-
layer perceptron is highly effective in identifying and pruning
redundant weights, and the final models are generally very
compact. Note this is achieved without a significant sacrifice
in generalisation performance.

TABLE III

MEAN TRAINING TIME FOR BAYESIAN (BMLP) AND RELEVANCE

(RMLP) MULTI -LAYER PERCEPTRON NETWORKS OVER20 REPLICATES.

Benchmark BMLP RMLP

Breast cancer 65.44s± 1.10 93.30s± 1.30
Diabetis 102.93s± 1.43 130.13s± 1.23
Heart 84.21s± 1.56 100.93s± 1.37
Pima 47.95s± 0.66 66.32s± 1.42
Synthetic 31.81s± 0.99 38.04s± 0.80
Thyroid 28.65s± 0.34 42.36s± 0.56
Titanic 12.37s± 0.19 21.80s± 0.72

Table III shows the mean training time (and associated
standard error of the mean) for the conventional Bayesian and
relevance multi-layer perceptron networks. The total training
time for the RMLP model is up to twice that of the BMLP.
To some extent the computational expense of optimising one
regularisation parameter for each weights is ameliorated by the
reduction in the size of the network during training due to the
pruning of redundant weights. It should be noted however, that
the implementation of the RMLP has not been fully optimised,
so for instance the diagonal elements of the Hessian are simply
extracted from the full Hessian (computed using the NETLAB
routinenethess ), and could be computed more efficiently.

Figure 1 shows examples of B-MLP and R-MLP models of
Ripley’s synthetic benchmark dataset [14]. Both networks
provide reasonable models of the data, however the R-MLP
model is very much smaller, having on average only 5.33 well
defined weights (the remainder having largely been pruned
away) to the 43.71 of the B-MLP, while performing on average
slightly better in terms of test set error (Table I).

IV. CONCLUSIONS

In this paper, we have proposed the use of weight-decay
regularisation of multi-layer perceptron networks, with sep-
arate regularisation parameters for each weight, in the spirit
of Tipping’s Relevance Vector Machine (RVM). The result-
ing models are, like the RVM, highly sparse, without re-
ducing generalisation performance or incurring unreasonably
extended training time. We term the resulting model the Rele-
vance Multi-Layer Perceptron (R-MLP) network. We hope that
this prior will prove useful in practical applications of artificial
neural networks, as it provides a means of simultaneously
controlling over-fitting and generating a parsimonious model,
two key aims of non-linear statistical modelling. We plan to
apply these models to problems in the environmental sciences,
such as statistical downscaling [17], involving the use of
non-standard loss functions incorporating prior knowledge
regarding the target distribution. Further work is also required
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Fig. 1. Example of conventional Bayesian (B-MLP) and relevance (R-MLP) models of Ripley’ssynthetic benchmark dataset [14].

to evaluate the R-MLP against other pruning algorithms [4,
18].
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