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Abstract— This paper compares the performance, in terms
of prediction accuracy, of a learning classifier system based on
Wilson’s XCS with commonly used classifiers from the fields of
decision trees, neural networks and support vector machines. The
experiments are performed on the Forest Cover Type database,
a large data set available at the UCI KDD Archive [13]. The
first objective of this paper is to highlight the potential of
XCS as a data mining tool. The second objective is to provide
extensive benchmarking results for experiments performed under
randomised conditions for several modelling techniques. We find
that C5 Decision trees perform significantly better than other
techniques, and that the learning classifier system performs better
or as well as three of the eight classifiers used. We discuss why
C5 outperforms the other classifiers and identify ways in which
XCS could be adapted to make it more suitable for data mining.

I. INTRODUCTION

Learning Classifier Systems (LCSs) are rule based classi-
fiers, often called Genetics Based Machine Learning tools,
consisting of a set of rules and procedures for performing
classifications and discovering rules using genetic and non-
genetic operators. A comprehensive description of LCS can
be found in the literature, for example [15], [19]. Recent LCS
research is described in [20], [21], [22]. Traditionally, the most
common applications of LCSs have been from the domain of
reinforcement learning (e.g. Markov decision problems [29]).
However, the potential for LCS in supervised learning for data
mining has been known for some time [16]. The rationale for
believing in this potential is based in part on the following
observations concerning the following characteristics of LCS:

� LCS have been shown to be capable of learning complex,
non-linear classification functions that can be used to
accurately predict new cases, on a variety of problem
domains.

� LCS generalise over the attribute space and under ideal
conditions can discover a maximally general, accurate
rule set to perform classifications.

� The fact that LCS are rule based means they offer the
potential for explanatory data analysis in addition to
predictive modelling. In real world data mining exercises
being able to explain how a technique forms classifica-
tions is often as important as accuracy, and techniques
where this is difficult (such as neural networks) are often
treated with suspicion in industry.

� Unlike most rule induction algorithms LCS do not dis-
cover and evaluate rules in isolation. Instead, they search

the space of possible rule sets defined for a particular
problem.

� In addition to being able to form complete classifications
LCS can also be used for nugget discovery (the discovery
of classifications for some subset of the attribute space).
The degree of coverage of the attribute space required
can be controlled by careful parameterisation.

� The way LCS evaluate rules and rule sets (described
in Section III) make them ideal for modelling problems
where the model may be changing over time, and for
maintaining and updating a classification function without
the requirement of retraining on all the data.

LCS are similar to Neural Networks and Support Vector
Machines in the fact that the generality of models that can
potentially be constructed can make them hard to parameterise
properly (the similarities between LCS and NN are discussed
in [27]). In order to understand how well procedures devel-
oped for generated problems such as the multiplexer and the
Monk’s problem work on real world data sets, a thorough
examination and evaluation needs to be conducted. Recently
there have been several investigations into applying LCS to
machine learning and data mining classification problems [34],
[2], [17], [26]. This paper continues this investigation by
applying an adaptation of a recently developed LCS, Wilson’s
XCS [32], to a large multi-class benchmark data set available
at the The UCI KDD Archive [13], the Forest Cover Type
data set. The Forest Cover data set has been used in some
classifier comparisons [4], [23], [10] but the work presented
here is, to the best of our knowledge, the first comparative
study using Neural Networks (NNs), Support Vector Machines
(SVMs) and Decision Trees (DTs). The rest of this paper is
structured as follows: Section II describes the data set and the
experimental procedure adopted. Section III briefly describes
XCS in a data mining context. Section IV outlines the NN,
SVM and DT structures used in experimentation. Section V
presents the results and Section VI discusses in more detail
these results and suggests how XCS could be extended to
improve performance.

II. FOREST COVER DATA

Experiments were performed on the Forest Cover Type
data set, available from the UCI KDD Archive [13]. The
classification task is to predict the forest cover type (seven



classes) for 30m � 30m cells, given only cartographic data [4].
A case consists of observation of ten continuous variables and
two nominal categorical variables, wilderness area designation
(four types) and soil type (forty types) plus the forest type des-
ignation. The nominal categorical variables are represented by
44 binary dummy variables. The database consists of 581012
cases. This data is a representative instance of a domain of
problems common in data mining and thus provides a useful
benchmark for comparing classifiers. The characteristics that
make it of particular interest are:

1) a large number of cases;
2) a relatively large number of attributes and classes for the

response;
3) an unequal class distribution for the response classes;
4) both continuous and categorical variables.

Another feature of the data worth noting is that there
are no missing values. This is often not the case in data
mining problems, but this characteristic allows us to focus
on the key performance issues of the classifiers compared.
Unless otherwise indicated, the continuous attributes were
linearly scaled to

� �������
and the nominal categorical data was

represented with dummy variables.

A. Experimental Design

Previously published results for this data set have used the
first 11,340 records for training data, the next 3,780 records
for validation data, and last 565,892 records used for testing
data. The data was rearranged so that the class frequencies
are equal in the training and validation data (thus significantly
reducing the number of rare classes in the testing data).
Using this design, published accuracy results on the testing
data include 70% using back propagation [4], 58% using
Linear Discriminant Analysis [4], 71% using Support Vector
Machines [23]and 73.41% using SVM modified to allow for
the unrepresentative class distribution in the training data [10].

As discussed in [10], balancing the data so that the classes
are equally represented in the training data by sampling
the complete data set can make the final accuracy measure
unrepresentative of the true model. Our goal is to provide an
assessment of the accuracy performance of several classifica-
tion techniques on this data, thus providing results for future
classifier comparisons. Hence, the experimental procedure fol-
lowed is based on that recommended in [25]. The data set was
randomly split into 10 sets (thus removing the class frequency
bias introduced by balancing). Each set was further split into
approximately 38000 training cases and 20000 testing cases.
If parameter tuning occurred it was done so on the basis of
performance on the first training data set. The size of the
data set means there is no need for cross validation, hence
when comparing performance it seems reasonable to use a
simple t-test with a Bonferroni adjustment for the number of
comparisons rather than the alternative tests described in [12].

III. LEARNING CLASSIFIER SYSTEMS (LCS) AND

WILSON’S ERROR BASED CLASSIFIER (XCS)

LCSs construct a rule set, and hence a classifier, through
the iterated exposure to test cases. The LCS receives a single
case, attempts to classify this case, then receives a reward
quantifying whether the classification was correct or not. A
full description of the fundamentals of “Michigan” LCS is
given in [15].

LCS rules are usually of the form if condition then clas-
sification, where the condition is commonly a conjunction of
logical expressions on some subset of the attributes. A rule
has a set of associated parameters to estimate the quality of
the rule and its suitability for use as a basis for creating new
rules. The three primary components of an LCS are:

1) a production system that specifies how to construct a
mapping, from the rule set, from the attribute space
to either a single classification or a prediction of the
suitability of some or all possible classifications;

2) a reinforcement algorithm that controls how the rule
parameters are adjusted based on the reward feedback
concerning the accuracy of predictions;

3) a rule discovery component that alters the rules in the
rule set through (possibly genetic) operators.

The training of an LCS proceeds as follows:
� LCS is passed a single training case;
� rules whose condition match the case are formed into a

match set;
� the match set is used to form a prediction array, an

estimate of the reward (a value attributed to correct
classification) for each possible class the case may take;

� based on the prediction array, the LCS selects a classifi-
cation;

� the reinforcement algorithm receives the reward (often
1000 for a correct classification and 0 for incorrect one)
and uses it to adjust the parameters of the rules in the
match set advocating the selected action;

� the rule creation algorithm may, depending on some
triggering procedure, create new rules by applying genetic
operators of crossover and mutation to rules selected from
the rule set.

It is worth noting that LCSs are usually applied to re-
inforcement learning problems, and as such are involved in
unsupervised learning (unsupervised in the sense that it is
not informed what the best classification could have been
or what reward would have been received for alternative
classifications).

There are many alternative implementations of LCSs
(see [19] for an overview). Wilson’s error based classifier,
XCS, is a recently developed LCS which is designed to
discover accurate, maximally general rules that form a com-
plete classification of the attribute space. XCS was introduced
in [32], and has the subject of much recent research [20], [21],
[22]. A full description of the basic XCS algorithm is given
in [9].



Briefly, XCS works as follows: Each rule in XCS has a
prediction parameter, an estimate of the expected reward of the
rule, an error parameter, an estimate of the absolute deviation
of the reward around the expected value, and a fitness value,
an estimate of the accuracy of the rule (an inverse function of
its error) relative to other rules in the rule set matching similar
attribute values and advocating the same classification.

These parameters are used to form predictions and are
updated based on reward feedback. Some of the distinguishing
features of XCS are that:

� XCS uses the Widrow-Hoff reinforcement learning algo-
rithm [32] for updating rule parameters.

� XCS assesses a rules fitness (the basis for selection for the
genetic algorithm) using an estimate of the classification
error of a rule, rather than the expected reward. Thus
in terms of creating new rules XCS treats a rule that is
always wrong similarly to a rule that is always correct.

� XCS niches the genetic algorithm in a way that aims to
maintain complete coverage of the attribute space for all
classes.

IV. CLASSIFIER IMPLEMENTATIONS

To provide extensive benchmark results for this data set we
assessed the performance of the following classifiers:

A. Classification/Decision Trees

Experiments were performed with three classification tree
techniques: C5 [24], CHAID [18] and Classification and Re-
gression Trees (CART) [5] using the Clementine package [28]
for C5 and CART and KnowledgeSeeker software [1] for
CHAID. The continuous attributes were not scaled for the
decision trees since it would make no difference to the trees
constructed.

B. Neural Networks

We used two Neural Networks to construct classifiers. The
first was the NN provided by Clementine, which we denote
ClemNN, with the default parameter settings. The multi-layer
perceptron networks [3] have a single hidden layer containing
20 nodes.

The second NN also has a single hidden layer, initially
containing 32 or 64 neurons. The output layer utilised the
Softmax activation function [6], [7] with a cross-entropy
error metric [14] and a standard 1-of-c encoding system. A
Bayesian regularisation scheme was used to avoid overfitting,
adopting a Laplace prior [31], where the usual regularisation
parameters were integrated out analytically in the style of [8].
An important advantage of a Laplace prior over the more
common Gaussian prior is that it sets redundant weights to
exactly zero, allowing them to be pruned from the network.
We call these NNs BayesNN ��� and BayesNN ��� .
C. Support Vector Machines

SVMs [30] were assessed using the Java implementation
of LIBSVM, an integrated software for support vector classi-
fication [11]. LibSVM implements the basic SVM algorithm

of Platt [23]. The SVM we used was a standard C-Support
Vector Classification using the one-against-one approach for
multi-class classification in which

�����
	 ������
classifiers are

constructed and each one trains data from two different classes.
Classification is achieved by using a voting strategy for the������	 ������

classifiers. We experimented with two kernel
types: a linear kernel (LinSVM) and a radial basis function
kernel (RadSVM). An adjustment was made to allow for the
unbalanced class distributions.

D. XCS

A rule condition for the forest cover data combines the
real valued implementation described in [33] and a standard
bitstring implementation using the ternary alphabet � � � � ����� .
A

�
means the rule will match this attribute whether the

attribute is value 0 or 1. Wilson’s real valued representation
stores an interval predicate for each attribute. A rule stores
two values for attribute � , ������� � �"! � ��# � � and matches an input
value $ if and only if

! � 	 # �&%'$(% ! �*) # � . XCS was
implemented using a maximum rule set size +,� ��- � � � �

, a
run size of 500,000 and the standard operators and parameter
settings described in [33], [9].

V. RESULTS

The accuracy results for the 9 classifiers used are shown in
Table I.

The first point to note is that the results fall into broad
categories: less than 70% (LinSVM, CART and XCS), 70%-
75% (RadSVM, CHAID and clemNN) and greater than 80%
(C5 and BayesNN). Although there are significant differences
within these categories, it is probably possible to experiment
with parameters to improve each technique’s performance
within the categories. This implies there are levels of complex-
ity in the underlying relationship between the attributes and
the response, and the level of accuracy attained is determined
in part by the level of complexity of model considered. This
point is reinforced by the fact that the more complex model
BayesNN ��� outperforms BayesNN ��� .

Table I shows that C5 is the best technique for classifying
this data. Using a t-test assuming unequal variance, the mean
testing accuracy of C5 tests significantly higher than that
of all other techniques at the 1% level (even after making
a Bonferroni adjustment to allow for multiple tests). An
examination of the rule sets derived from the C5 tree indicates
that C5 generates approximately 2500 rules, with the majority
covering less than 10 cases. Couple this with the fact that C5
is clearly overfitting the data, then the implication is that C5
is modelling almost on a case by case basis.

Restricting C5 to a minimum leaf node size of 20 cases
(the default parameter in Clementine is 2) reduces the train-
ing/testing accuracy to 84% and 79% and the number of rules
to 531 for data set 1. Both CHAID and CART implement
stricter stopping criteria than C5, and this is probably why
they perform less well. Altering CHAIDs automatic stop size
from the default of 5% of the data base to 10 cases improves
training/testing accuracy for data set 1 to 87.12% and 79.8%.



TABLE I

ACCURACY RESULTS FOR 10 DISJOINT DATA SETS OF THE FOREST COVER DATA

Class Model Train Mean Test Mean Test Min Test Max Test SD

C5 95.81% 83.71% 83.44% 83.96% 0.178

Trees CHAID 74.55% 72.67% 71.71% 73.57% 0.550

CART 69.16% 68.87% 68.09% 69.3% 0.414

ClemNN 75.54% 74.83% 74.1% 75.55% 0.428

NN BayesNN ��� 82.00% 80.32% 79.71% 80.82% 0.408

BayesNN ��� 82.97% 81.08% 80.73% 81.57% 0.278

SVM LinSVM 69.63% 68.32% 67.35% 69.29% 0.510

RadSVM 71.55% 70.66% 69.71% 71.3% 0.465

XCS XCS 67.14% 66.90% 64.13% 70.88% 2.39

The Neural network results illustrate the benefits of the
Bayesian regularisation, and reinforce the observation from
the DT results that increasing the complexity of the model
improves testing accuracy. The NN results are better than
those reported in [4]. Balancing the data by duplicating
training cases was found to have a detrimental performance
on overall accuracy with all techniques, and this may explain
the difference.

The SVMs performed worse than C5, CHAID and the
NNs, but the results are broadly in line with those reported
in [23], [10]. Further experimentation with the regularisation
and kernel parameters would probably improve performance.
For reasons discussed below, Standard XCS performed poorly.

A. Alterations to XCS

The standard implementation of XCS performed relatively
poorly on the training data (see Table I). Consideration of the
problem lead us to conclude that this was caused in part by
the following factors:

1) The use of dummy variables means that any case will
always have exactly 2 one values and 42 zero values.
Using standard crossover means that offspring will often
have more than 2 one values and will hence never match
a case.

2) XCS deletes rules with the goal of maintaining an
equal action set size for all niches. However, given the
unbalanced class frequencies, this means that XCS is
allocating a large proportion of its available rule space
to modelling very rare classes.

3) XCS is unsupervised, hence when it performs a clas-
sification it is informed (via the passing of a reward)
whether a classification was correct or not, rather than
being told the correct classification. It samples pos-
sible classifications using an exploit/explore strategy
(in exploit mode it chooses the classification with the
highest estimate prediction, in explore mode it chooses

a random classification). This means XCS is spending
a large proportion of its run time attempting to gather
information which is provided to other techniques in
training.

4) XCS attempts to form a complete mapping from the
attribute space to the class space, hence it assigns an
equal proportion of its rule set to finding incorrect
classifications as it does to finding correct classifications.

5) The parameter settings may be suboptimal. Problems 2,
3 and 4 outlined above could all, in theory, be overcome
with a large enough rule set and a long enough run. In
addition, the variability of the accuracy results relative
to the other techniques may indicate that the genetic
algorithm is activating too frequently or that the rule set
is not large enough.

Time constraints make it unfeasible to properly assess the
effect of parameter values on performance (informal experi-
mentation suggested that increasing the rule set size to 30,000
and the run size to 1,000,000 did not significantly improve
performance). Instead, we concentrated on alterations specific
to data mining in general and the type of problem characterised
by the Forest Cover data set. We implemented two alterations
to XCS to address the first two points raised above.

1) XCS for Forest Cover Data: XCS � : To stop the produc-
tion of infeasible rules, crossover was altered so that it was
forced to create a valid offspring. We maintain a bit string
representation rather than use a categorical coding, but restrict
crossover so that any child will always inherit all the binary
variables for either soil type or wilderness area. Retaining a
bitstring representation allows for conditions of the form (if
soil type != 1 and soil type != 2) with the coding (00**). This
type of condition is not easily encoded using a categorical
coding.

Mutation is still allowed to change any bit, but now if it
changes a bit to a one in either the soil type or wilderness
area section and another bit was already set to one, it will



adjust the bitstring so that the condition remains feasible.
2) XCS weighted for prior class distributions : XCS � : In

order to force XCS to concentrate on finding rules for the
most frequently occurring classes, the deletion probabilities
were weighted to increase the probability of deleting rules
advocating the classification of the rarer classes. In addition,
the GA triggering test was weighted to make the GA occur
more frequently in action sets advocating the more frequent
classes. XCS � uses the GA of XCS � and the class weightings.

TABLE II

RESULTS FOR XCS WITH PROBLEM SPECIFIC MODIFICATIONS

Model Train Mean Test Mean Test Min Test Max Test SD

XCS � 67.14% 66.90% 64.13% 70.88% 2.39

XCS � 69.62% 69.46% 66.91% 70.53% 1.14

XCS � 71.37% 71.15% 70.06% 72.24% 0.9379

The results for XCS � and XCS � are given in Table II.
XCS � provides a significant improvement to XCS � , and XCS �
significantly outperforms XCS � . XCS � is significantly better
than CART and LinSVM and not significantly worse than
RadSVM. XCS � also has lower standard deviation than the
other XCS implementations, although the fact it is still higher
than the standard deviation of the other classifiers is an
indication that further improvement could be attained through
better parameterisation.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The first objective of this paper was to provide extensive
benchmarking results for the Forest Cover data set using DTs,
NNs, SVMs and LCSs. It may well be possible to improve
results for these techniques through experimentation with
alternative parameters. For example, CHAID may perform
better if dummy variables were not used, since it implements
special procedures for handling nominal categorical variables
(doing this gives training/testing accuracy to 76% and 74% for
data set 1). However, it is clear that high accuracy requires
a very complex model. The explanatory benefits of these
complex models is questionable, and in many data mining
problems this complexity is undesirable since it leads to
considerable overfitting. C5 achieves the improvement from
75% to 85% by very low coverage leaf nodes which almost
adopt a case by case classification. Techniques such as CHAID
which are designed to avoid this situation are bound to under-
perform. When using this data to assess a classifier we would
recommend three grades of performance: less than 70% is
poor, 70%-75% is adequate and greater than 75% is good.
Since it was not the goal of this paper to gain an understanding
into the underlying relations in the data, we have not presented
any confusion matrices, discussed performance on individual
classes or examined rules to look for explanatory relationships.

The second objective of this paper was to assess XCS on
the data set. XCS, with problem specific alterations, performs
adequately. Although LCS offer real benefits to data miners

in terms of ease of understanding and wide scope of appli-
cability, further work is required to properly understand how
the numerous parameters and alternative operators employed
affect performance on complex, real world data sets. It is
thought that more alterations could improve the accuracy on
the Forest Cover data set, and may also improve XCS perfor-
mance on other data mining problems. For example, the real
value representation described in [33] and used here involves
an interval split on an attribute, and it may be worthwhile
experimenting with a binary split representation. In addition,
in training XCS does not utilise all the information it could.
Rather than only reinforce the selected classification, XCS
could be adapted to reinforce all the rules in the match set.
Initial experimentation with this supervised learning approach
indicates that a re-evaluation of the parameterisation of XCS
may be required. XCS attempts to construct a rule set that can
evaluate all classifications, even incorrect classifications. This
is often desirable but requires a large amount of resources in
terms of maximum number of rules. Alterations to direct XCS
to focus more on mapping correct classifications may improve
performance. Finally, XCS is normally applied to problems
where it is assumed a completely correct classification exists,
and some of the parameters relating to assessing a rule’s
fitness reflect this in punishing any misclassification harshly.
Further experimentation with a more controlled test problem
is required to understand the effects of inherent classification
error on performance.
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