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Abstract— Clostridium botulinum is a bacterium present in
the raw ingredients of many foods. It produces a powerful
neurotoxin as part of its growth process, that can prove fatal
when doses as small as 30ng are consumed. It is therefore vital
to be able to accurately determine the food processing and
storage conditions where toxin production is possible, known
as the “growth domain”. This paper describes a new approach
to modelling the growth domain of microbial pathogens, by
constructing a regularised kernel model relating heat treatment
and subsequent incubation conditions to the parameters of a
statistical distribution modelling the probability of growth as a
function of incubation time. We demonstrate that the use of the
“kernel trick” permits the extension of methods from classical
survival analysis to account for non-linear dependencies in a
principled manner.

I. INTRODUCTION

Clostridium botulinum is an anaerobic bacterium that pro-
duces one of the most powerful toxins known to science as
a by-product of its growth processes. Ingestion of only 30ng
of the toxin can result in severe illness and even death [1].
It is therefore vital that steps should be taken to ensure that
the toxin is not present in food. As C. botulinum spores
are ubiquitous in raw ingredients, food must be processed to
ensure that all of these spores are destroyed, or so that the
spores are prevented from germinating, leading to cell division
and subsequent toxin production. Growth of C. botulinum is,
in most cases, principally dependent on environmental factors
such as temperature, pH, NaCl concentration and gas atmo-
sphere. It is important then to be able to define the conditions
under which the spores are prevented from germinating, and
giving rise to toxin production. This is especially true in the
case of minimally processed chilled foods, as non-proteolytic
C. botulinum is capable of growth and toxin production at chill
temperatures. The safety of these foods with respect to non-
proteolytic C. botulinum is likely to rely on a combination
of heat treatment and subsequent incubation at refrigeration
temperatures (Lund and Notermans [1], Peck [2]).

This paper describes a neural model of toxin production by
C. botulinum in a meat-based medium containing lysozyme,
following a range of heat treatments. We demonstrate that the
familiar “kernel trick” can be used to construct non-linear
equivalents of traditional linear parametric survival analysis
models. The use of regularisation means that the bias-variance
trade-off can be effectively controlled by a small set of
regularisation parameters. This allows the use of powerful non-
linear kernel functions without a significant risk of over-fitting.

The remainder of this paper is structured as follows: Sec-
tion II gives an overview of classical parametric survival
analysis techniques. Section III describes a dataset covering
the growth domain of C. botulinum used in the comparison of
kernel and existing growth domain models. Sections IV - VI,
describe the construction of growth domain models, using a
growth domain model representative of current practice, con-
ventional linear survival analysis and kernel survival analysis
methods. Finally the work is summarised in section VII.

II. PARAMETRIC SURVIVAL ANALYSIS

Survival analysis (see e.g. [3]) is a field of classical statistics
concerned with data recording the time that elapses before
the occurrence of each of a set of point events, known as
“failures”. Many applications of survival analysis arise in
medical studies, for example it might be of interest to model
the length of time that patients survive following each of a
range of competing treatments for a given illness. Survival
analysis requires there to be a well-defined origin at which
time

�����
, an appropriate scale for measuring time and a

unambiguous definition of failure. In the case of our medical
example, the origin is defined by the time of treatment, the
time scale is measured in days following treatment and failure
defined by the patient’s death. Parametric survival analysis
therefore aims to determine the optimal parameters of a fixed
distribution describing time to failure, � ,

��� �
	����� � ��� �
	�� (1)

Note this differs from the usual statistical convention where
cumulative distribution functions are defined in terms of right
continuity, i.e.

����� 	������ ������� 	
, and hence the probability

density function is defined as,
� � �
	���� � �!� �
	"�

(2)

Another function of interest in survival analysis is the hazard
function, given by # � �
	�� � � �
	

��� �
	%$ (3)

which represents the instantaneous probability of failure at
time

�
, given survival until time

�
. Any parametric distribution

over non-negative values of
�

may be used (in most applica-
tions it does not make sense to consider failure before time�&�'�

). Table I shows a number of statistical distributions
commonly used in parametric survival analysis. The optimal



parameters of the survival distribution are traditionally found
via a maximum likelihood approach. Given a dataset � �� ��������	��
 , recording the failure time for � events, then assum-
ing that the data represents an independent and identically
distributed (i.i.d.) sample from some underlying distribution,
then the likelihood of the data is given by the product of the
density function over the observed data, i.e.

 ��������
 � � � � 	"� (4)

The optimal parameters are then determined by minimising
the negative logarithm of the likelihood function.

TABLE I

STATISTICAL DISTRIBUTIONS COMMONLY ENCOUNTERED IN PARAMETRIC

SURVIVAL ANALYSIS.

Distribution
Density

Function ������� Survivor
Function ���	���

Exponential ������� "!$#&%�(' ���� �!$#&%�('
Weibull )+* %�,$-�./ ,10 ���� 32�# ) %/ 0 *54 ���6 "2�# ) %/ 0 *74
Log-logistic 8�9;:=<?>A@ B?C+D -FE;GH I� %?J �LK 8M9;: <�>N@ BLC+D -FEOGH IOPRQ ��LK 8M9S: < >A@ B?C$D -FEOGH I
Log-normal �T UWV6X % ���� ZY[# �X Q �	\N]R^7� #`_ � U6a bdc% ���	ef�Mghe
Gamma ihjk+lNm;n � mpo ��q o i % b c% ���	ef�Mghe

A. Censoring of Data in Parametric Survival Analysis

In many applications of survival analysis it is not practical
to observe every trial until failure occurs, and instead a fixed
observation period is imposed. Trials where failure is not
observed are said to have been “censored”. Returning to our
medical example, it is only to be expected that not all of the
patients will have died by the time the observation period has
finished (a period of 5 years is commonly used in defining
survival rates for medical procedures), other patients may have
died from totally unrelated causes, for instance road traffic
accidents, or simply may have moved away and are no longer
in contact with the medical institution conducting the study.
Clearly, even though the failure time is unknown, censored
data should still be included in fitting the survival distribution,
as they provide information on an interval of time where
failure was not observed. It is a simple matter to incorporate
censoring into the likelihood function: Uncensored data are
handled as before, for censored data, however, all that is known
is that the failure will occur at some time greater than the
censoring time, so the likelihood for censored observations is
given by

��� �
	
. The likelihood function then becomes � ��Mr$s � � � � 	 ���r+t ��� � � 	�� (5)

where u and v represent the index sets of uncensored and
censored observations respectively. Note that the censoring
time may vary for each observation, or may be constant for
all trials.

B. An Illustrative Example

Consider an experiment where spores of C. botulinum
were introduced into five vials containing nutrient media and
subjected to identical heat treatment and incubation condi-
tions. The observed time to growth for these five replicates
were w6x $Sy x $;z � $Sz � and zF{ days. Figure 1 shows exponential,
Weibull, log-logistic and log-normal distributions fitted using
a maximum likelihood approach. Subjectively, the exponential
model clearly does not fit the observed data as well as the other
three distributions investigated. This is perhaps unsurprising as
the exponential distribution is defined by a single parameter
and hence is less flexible than the Weibull, log-logistic, or
log-normal distributions, each of which are defined by two
parameters. The exponential model is appropriate for survival
data where there is a constant hazard rate, i.e. the probability
of failure is is independent the amount of time the subject
has already survived. An objective measure of goodness of
fit is given by the log-likelihoods for the four models (given
in table II), which also demonstrates the superiority of the
log-normal, log-logistic and Weibull distributions over the
exponential distribution.
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Fig. 1. Maximum likelihood survival models of example dataset using
exponential (a), Weibull (b), log-logistic (c) and log-normal (d) survivor
functions.



TABLE II

LOG-LIKELIHOODS FOR THE EXAMPLE DATASET.

Model Log-likelihood

Exponential -21.6

Weibull -17.1

Log-logistic -17.7

Log-normal -17.6

C. Dealing with Explanatory Variables

In most applications of survival analysis, we seek to con-
struct a model capturing the relationship between survival
times and the values of a set of � explanatory variables,��� �������d� ��	��
 . In the case of linear parametric survival
analysis, a linear combination of the explanatory variables is
used to provide conditional estimates for the parameters of the
survivor function

��� �
	
, for example the Weibull distribution

has shape and scale parameters 	 and 
 respectively, so the
linear survival model is given by

	 � � 	��������� ������� � ����� 
 � � 	����� �!� �����"� � $ (6)

where the model parameters
 � $ � � $  � and

� �
are found by

minimising the likelihood function (5).

III. THE DATASET

The growth domain models for C. botulinum described here
are based on the dataset described in Fernández and Peck [4].
Tubes containing a sterile meat-based medium containing
lysozyme, an enzyme found to increase the measured heat
resistance of spores of non-proteolytic C. botulinum (Lund
and Peck [5], Peck [2]), were inoculated with a suspension
of the spores of eight strains of non-proteolytic C. botulinum,
at a final concentration of w �$# spores per tube, and subjected
to a range of heat treatments, shown in table III. The tubes
were then cooled and incubated at temperatures of 5, 8, 12,
16 and y x&% C for 90 days. Five replicates were performed at
each incubation temperature, for each heat treatment regime.
The tubes were inspected every 2–3 days for signs of growth,
indicated by obvious formation of gas. At the end of the
experiment, samples from each heat treatment regime, showing
growth at the lowest incubation temperature and for the highest
incubation temperature that did not show growth, were tested
for toxin (Peck et al. [6], Stringer et al. [7], Carlin and
Peck [8]). This type of dataset is known as time to growth
data, as the results are presented in terms of a table showing
the number of days after which each tube showed signs of
growth. Full details of the experimental method are recorded
in Fernández and Peck [4].

IV. EXAMPLE OF CURRENT PRACTICE

The paper by Whiting and Oriente [9] gives a representative
example of current practice in modelling growth domain of
microbial pathogens, we adopt this method as a benchmark
against which to evaluate the kernel survival analysis tech-
nique proposed in this paper. The Whiting-Oriente model is

constructed in two stages: First, the probability of growth
within each set of five replicates sharing a common heat
treatment regime and incubation temperature are modelled
using a logistic model,

� � �
	�� ��')(+*
w �-,/.103214�5�6 $ (7)

where
�

is the time in days,
� � �
	

is the probability of growth
occurring by time

�
,
� ')(7*

is the maximum probability of
growth after the censoring time of 91 days, 8 is scale param-
eter and 9 is a location parameter. Following [9], the optimal
values for

�:')(7*
, 8 and 9 for each of the 309 combinations

of heat treatment regime and incubation conditions treatment
conditions were determined by a least-square fitting procedure,
minimising the squared difference between the model (7) and
the empirical cumulative distribution function. Box constraints
were imposed to ensure that

� ')(+*
is constrained to lie

between 0 and 1. In the second stage, a least-squares quadratic
regression model is used to estimate the optimal values of� ')(7*

, 8 , and ;=<1> � 9 	 as a function of the explanatory variables
(cooking time, incubation time and cooking temperature. This
is implemented as a standard linear regression problem (the
model including all main effects, squared main effects and all
pairwise interaction terms). Backward elimination was then
employed to remove terms not contributing significantly to
the quality of the model fit.

Figure 2 (a) and (b) illustrate the major shortcoming of this
approach, showing the stage one and stage two model fits for
a set time to growth data for five test tubes under identical
heat treatment and incubation conditions. The stage 1 model
fit appears to be very good, however the stage two model fit
is clearly very poor. This occurs because the second stage
model fitting procedure is related to the data itself only via
the parameters of the logistic models resulting from stage one.
Indeed there is no guarantee that errors introduced by the stage
two model fitting will not result in a non-zero probability of
growth before time

� � �
or probabilities of growth outside

the range ? � $ wA@ . For example, out of 309 sets of replicates, on

TABLE III

HEAT TREATMENTS APPLIED TO A MEAT-BASED MEDIUM CONTAINING

SPORES OF C. botulinum

Temperature ( B C) Duration (min)

CED B C 104.9 529.1 998.9
1596.3 2065.9 2544.5CEF B C 284.6 463.1 734.2
1071.5 1376.5 1793.0G D B C 11.4 69.7 98.0
127.9 183.8 229.6
294.9 362.7G F B C 23.3 35.7 52.0
57.8 83.8H D B C 10.3 10.9 15.3
23.5 33.5
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Fig. 2. Example of a stage one model fit (a) and corresponding stage two
model fit (b) using the Whiting-Oriente model.

69 occasions the
�:')(+*

parameter was either less than zero or
greater than one. This means of course that the log-likelihood
statistic cannot be determined for this model. In order to form
a consistent model of the data, the fitting of the survivor
function and linear regression components of the model must
be conducted in a single step.

V. CONVENTIONAL PARAMETRIC SURVIVAL ANALYSIS

The conventional approach to survival analysis seeks to
form a linear model that accurately captures the relationship
between the explanatory variables,

� �
, and the parameters

of the survivor function used to model the corresponding
survival times,

� �
. The parameters of the linear model are

normally determined by a maximum likelihood approach. In
this study, we construct a polynomial regression model by
performing a linear regression with all main effects, squared
main effects and all interaction terms. Again a backward
elimination procedure is used to remove redundant regressors.

TABLE IV

LOG-LIKELIHOODS FOR LINEAR PARAMETRIC SURVIVAL MODELS.

Model Log-likelihood

Exponential -2153.1

Weibull -2018.5

Log-logistic -1893.8

Figure 3 gives examples of results obtained using expo-
nential, log-logistic and Weibull survivor functions to model
an observed set of five replicate with common heat treatment
and incubation conditions. Again, the log-logistic and Weibull
models appear to give a subjectively better fit to the observed
data. This result is confirmed by the log-likelihood statistics
for each mode, shown in table IV, in this case the log-logistic
model outperforms the Weibull models.

VI. KERNEL SURVIVAL ANALYSIS

In recent years the “kernel trick” has been shown to
provide a principled and effective strategy for constructing
non-linear variants of existing linear statistical techniques,
such as ridge regression [10, 11], principal component analysis

and Fisher discriminant analysis [12, 13], as well as more
modern methods such as the maximum margin classifier [14,
15] (for a comprehensive survey of kernel learning methods,
see Schölkopf and Smola [16]). In this work, we use this
approach to develop a non-linear survival analysis technique.
Given a dataset consisting of observed survival times (which
may or may not be censored) and explanatory variables,

� � � � � � $ � � 	p� � �	��
 $ � � ����� � � $ � � � ��� �
we construct linear survival models in a feature space �
formed by a fixed transformation of the input variables,� � � 	 � . Rather than specifying the transformation�

directly, the feature space is instead induced by a kernel
function 
 � ���� 	 �

, obeying Mercers conditions
[17], that defines the inner product between vectors in � , i.e.
 � � $ � � 	���� � � � 	 � � � � � 	 � . A common kernel function is the
radial basis function,
 � � $ � � 	���������� ����� � � � � ����� $
used for all kernel models comprising this study. In the case
of the Weibull survivor function, the kernel survival model is
then defined by

	 � � 	�������� � �  � � � � � 	 ����� �7�
and


 � � 	������ � � ����!� � � � 	 ���"� �����
The exponential transformation ensures that the modelled
parameters of the survivor function are strictly positive. A
logistic transformation can be incorporated into the model if
a parameter of the survivor function is required to lie in the
range ? � $ w @ . The model parameters

�� $ � � $  � and
� �

are
then determined by minimising the regularised negative log-
likelihood of the observed data,! � " s ;3<&> � � � �$# � � 	 � " t ;=<1> ��� � �%# � � 	

� & � �  � � � �'& � �  � � � $
where

& �
and

& �
are regularisation constants [18], controlling

the bias-variance trade-off [19] for the models used to estimate
the conditional shape and scale parameters of the Weibull
survivor function respectively. The representer theorem [20]
suggests that the minimiser of regularised criteria of this form
can be written as expansions over training data,

 � � �" �	��
)( � � � � � � 	 $ �����  � � �" ����
*( �� � � � � 	��
The kernel survival model can then be written in the form of
kernel expansions:

	 � � 	��������,+ �" ����
)( � � 
 � � � $ � 	 ��� �.- $
and


 � � 	��������,+ �" ����
)( �� 
 � � � $ � 	 �"� �/- �
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Fig. 3. Example output of linear parametric survival analysis models using exponential (a), log-logistic (b) and Weibull (c) survivor functions.

Like other kernel methods, the optimal parameters of the
model are given by the solution of a convex optimisation
problem, without local minima (in this study we use a second
order Newton gradient descent training procedure). A second
advantage of a kernel approach is that control of over-fitting
is simply a matter of choosing the optimal values of the
regularisation parameters, in this case

& �
and

& �
, via a � -fold

cross-validation strategy [21].
Figure 4 (a-c) show example model fits for kernel survival

analysis models based on exponential, log-logistic and Weibull
survivor functions respectively. In each case the necessary
kernel and regularisation parameters were optimised so as to
minimise the 10-fold cross-validation estimate of the negative
log-likelihood using a Nelder-Mead optimisation method [22].
As is the case for classical linear parametric survival analysis,
the and log-logistic and Weibull distributions appear to be
subjectively superior to the exponential distribution. Figures
4 (d-e) show contour plots giving the probability of growth
as a function of incubation temperature and incubation time
for each model. The contours of constant probability appear
smooth in each case, demonstrating that the models have not
over-fitted the data.

TABLE V

LOG-LIKELIHOODS FOR KERNEL PARAMETRIC SURVIVAL MODELS.

Distribution Log-likelihood

Exponential -2094.4724

Log-logistic -2015.9851

Weibull -1768.2970

Table V shows the log-likelihoods for kernel survival mod-
els based on exponential, log-logistic and Weibull survivor
functions. Again the two-parameter log-logistic and Weibull
functions are superior, the best performance being obtained us-
ing the Weibull survivor function. The kernel models generally
outperform the conventional survival analysis methods based
on linear regression. This is because the use of regularisation

allows the use of flexible non-linear kernel functions whilst
avoiding over-fitting the training data.

Contour plots, such as those shown in figure 4 (c-d),
giving the probability of growth as a function of incubation
temperature and incubation time provide a straight-forward
means of determining the growth domain of a microbial
pathogen such as Clostridium botulinum. A contour can be
drawn representing a given probability of growth, say 0.05; the
growth domain is then defined as the region of the plot above
this contour, the region below the contour representing food
storage conditions considered to be at low risk from hazards
associated with Clostridium botulinum.

VII. CONCLUSIONS

In this paper we have shown that the use of the “kernel
trick” provides a principled means of constructing flexible
non-linear models for the analysis of survival data, based on
the large body of existing theory from classical statistics. The
proposed kernel survival analysis method clearly outperforms
survival analysis based on linear regression and a rather more
ad-hoc model representative of current practice in growth
domain modelling on a dataset describing the growth domain
of Clostridium botulinum. The improved performance lies
in the ability to model arbitrary relationships between treat-
ment/incubation regimes and the parameters of the survivor
function, and the use of regularisation to avoid over-fitting.
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