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Abstract— Geophysical surveys form a vital component of
modern archaeological studies, providing data on the location
of surviving sub-surface remains. Unfortunately interpretation
of the raw output from geophysical surveys requires consider-
able expertise and current methods for machine interpretation
are computationally expensive. In this paper, we describe the
use of multi-layer perceptron neural networks for automated
interpretation of geophysical survey data and present promising
initial results for a survey taken of the Roman suburb of Butrint,
a classical city situated in what is now Albania. Clearly a
computationally efficient and straightforward means of inverting
geophysical survey data is potentially an extremely useful tool in
encouraging public awareness of cultural heritage.

I. INTRODUCTION

The classical city of Butrint, located upon the eastern shore
of the Straits of Corfu in Southern Albania, encompasses
over 3000 years of Mediterranean history and archaeology.
Soon after 31 BC, following victory at the battle of Actium,
the emperor Augustus declared the city of Butrint a colony.
The archaeological record shows extensive construction in and
around the city at this period which has become the focus of
the current geophysical research. The city of Butrint is located
upon a small limestone promontory jutting out into a lagoonal
lake, the remnants of a former coastal embayment. The city is
today flanked to the south and west by a large deltaic alluvial
plain and is now over 1 km inland, connected to the coast
by a narrow channel draining from the lake. The colonial
expansion of the city focused strongly upon the developing
floodplain, adding significantly to its original size. Continued
accretion has led to the burial of this phase of settlement
since its abandonment sometime after the 6th century AD.
In order to investigate the nature and extent of the former
Roman suburb, an extensive archaeological geophysical survey
has been undertaken in order to map surviving sub-surface
remains. A high resolution total-field magnetic gradiometer
survey (see fig 1), measuring small fluctuations in the earths’
magnetic field caused by subsurface anomalies, has revealed
the buried remains of an extensive planned settlement and a
number of outlying buildings beneath the floodplain.

The majority of archaeological geophysical surveys are
concerned solely with identifying the location and extent of
buried archaeological remains. However, much geophysical
data inherently contains information relating to the depth and
geometry of anomaly features which is currently ignored due

Fig. 1. One of the authors (DJB) performing the geomagnetic survey of the
Roman suburb at the Butrint site in Southern Albania. Measurements were
made at 0.25m intervals along lines 1m apart.

to the lack of tools for automated interpretation. The archaeo-
logical site at Butrint was inscribed as a World Heritage Site
in 1992, and the area enlarged in 2000 to encompass much
of the Vrina Plain to the south, upon which the current study
is focused. As a protected cultural heritage resource, potential
for the archaeological excavation of buried remains is small.
As a result archaeological investigations necessarily rely on
geophysical remote sensing techniques to map the location
and extent of surviving sub-surface remains. It is therefore
vital to extract the maximum amount of information from the
geophysical data, in terms of clarifying the location, extent
and burial depth of features of interest. This not only has
intrinsic archaeological value, but is also vitally important to
the ongoing management strategies of the cultural landscape
in terms of current and future land-use.

The aim of the current research is to model the depth and
shape of source anomalies from the magnetic measurements,



providing an enhanced interpretation of the data through a sub-
surface reconstruction of archaeological features. While it is
relatively straight-forward to generate simulated geophysical
survey data for a given set of buried remains, taking into
account a model of the magnetic properties of the soil covering
the site, “inversion” of geomagnetic data to discover the
depth of sub-surface features has proved considerably more
difficult. The inversion of magnetic data has therefore been
traditionally achieved by constructing a magnetic sub-surface
model of the predicted features, composed of a regular array
of homogeneous dipole sources or blocks having a specified
value of magnetisation [1, 2]. The determination of a final sub-
surface model for a given set of magnetic measurements is
then achieved by adjusting the magnetisation of the dipole
sources until a satisfactory approximation of the measured
data is achieved [3]. The reconstruction problem is therefore
one of optimisation which can be solved by a wide variety of
iterative optimisation algorithms and global search methods [4,
5]. Plausible models are achieved by imposing a number of a
priori constraints often derived from ground truth data. Clearly
this is a computationally expensive procedure. Incomplete and
noisy data often cause problems in achieving a consistent so-
lution, especially when resolving complicated archaeological
structures.

The work presented here investigates a fundamentally dif-
ferent approach to deriving a sub-surface model from magnetic
survey data, by utilising a simple multi-layer perceptron neural
network to learn the non-linear mapping between measured
data and sub-surface model parameters. Artificial neural net-
works have been successfully applied to a number of other
geophysical modelling problems, including parameter predic-
tion and estimation, classification, filtering and optimisation
[6–9], however neural networks have not yet been widely
applied in computational archaeology. The adoption of a ma-
chine learning approach potentially holds several advantages
over more conventional modelling techniques, allowing the
effective solution of non-linear problems with complex, in-
complete and noisy data. The computational expense for neural
inversion, being dependent upon the dimension of the space
of unknown parameters, rather than the physical dimensions
of medium, is very low [10].

The remainder of this paper is structured as follows: In
section II we describe the neural network architecture used,
including details of the Bayesian regularisation scheme used
to avoid over-fitting. Section III describes the construction of a
neural network for inversion of geophysical survey data, using
simulated magnetic survey data. Results obtained by inversion
of real magnetic survey data for the Roman suburb of Butrint
are presented in section IV.

II. NEURAL NETWORK ARCHITECTURE

For this study, we adopt the familiar Multi-Layer Perceptron
network architecture (see e.g. Bishop [11]). The optimal model
parameters, � , are determined by gradient descent optimi-
sation of an appropriate error function,
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 is the vector of explanatory variables and �*
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desired output for the +�,.- training pattern. The error metric
most commonly encountered in non-linear regression is the
sum-of-squares error, given by� � � /0 �1 
��2� 	.3 
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where 38
 is the output of the network for the +9,.- training pat-
tern. In order to avoid over-fitting to the training data, however,
it is common to adopt a regularised [12] error function, adding
a term
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where = and
A

are regularisation parameters controlling the
bias-variance trade-off [13]. Minimising a regularised error
function of this nature is equivalent to the Bayesian approach
which seeks to maximise the posterior density of the weights
(e.g. [14, 15]), given byC 	 �ED �F��G C 	H� DI� � C 	 � �J�
where

C 	H� DI� � is the likelihood of the data and
C 	 � � is a

prior distribution over � . The form of the functions
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correspond to distributional assumptions regarding the

data likelihood and prior distribution over network parameters
respectively. The usual sum-of-squares metric (1), corresponds
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. For this study, we adopt
the Laplace prior propounded by Williams [16], which cor-
responds to a [Q� norm regularisation term,� : �]\1 
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where f is the number of model parameters. An interesting
feature of the Laplace regulariser is that it leads to pruning of
redundant model parameters. From 2, at a minimum of
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As a result, any weight not obtaining the data misfit sensitivity
of = Z A is set exactly to zero and can be pruned from the
network.

A. Eliminating Regularisation Parameters

The hyperparameters = and
A

can be estimated by max-
imising the evidence [14] or alternatively may be integrated
out analytically [16, 17]. Here we take the latter approach; the
posterior distribution of the parameters is given byp 	 � ���rq p 	 �sD = � p 	�=���tu= ` (3)



Assuming the Laplace prior, the prior distribution over the
weights of the network, conditioned on the regularisation
parameter = , is given by,p 	 � D = ��� ��: 	.= � O � P R S � 4 = �K: � (4)

where the necessary normalising constant is given by� : 	�=�� � � 0=�� \ ` (5)

Substituting equations 4 and 5 into equation 3, adopting the
(improper) uninformative Jeffreys prior, p 	.= ��� /�Z = [18], and
noting that = is strictly positive,� q��� 0 O \ = \ O � PJRLS � 4 = �K: ��tu= `
Using the Gamma integral, � ��
	�� O ��
 O���� t 	 ����� ������ (Grad-
shteyn and Ryzhik [19], equation 3.384), we obtainp 	 � ��� � 	if �	 0 � : � \ `
Taking the negative logarithm and omitting irrelevant constant
terms, 4����! p 	 � ���>f ���! �K: ` (6)

Applying a similar treatment to the data misfit term (assuming
a sum-of-squares error), we have[ � /0#" ���! � � ? f ���! � : `
For a network with more than one output unit, it is sensible
to assume that each output has a different noise process (and
therefore a different optimal value for

A
). It is also sensible

to assign hidden layer weights and weights associated with
each output unit to different regularisation classes so they are
regularised separately. This leads to the training criterion used
in this study:
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where * is the number of output units, + is the number
of regularisation classes (groups of weights sharing the same
regularisation parameter) and f ) is the number of non-zero
weights in the ,
,.- class. Note that bias parameters are not
normally regularised.

B. Choice of Data Misfit Term

While the conventional sum-of-squares misfit term would
be appropriate for this study, we adopt a data misfit term
corresponding to a heteroscedastic (input dependent variance)
Gaussian noise process, i.e.� � � -1 
��2� T �&�' Y�	.� 
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Note the multi-layer perceptron network now has two output
units, one giving the mean of the target distribution, . 	.��� , as
before, and an additional unit giving the predicted variance,

Y�	.��� . A linear activation function is used in the output unit
corresponding to . 	.��� , and an exponential activation function
for the unit corresponding to Y�	.��� , to enforce strictly positive
estimates of conditional variance. This approach provides two
advantages: Firstly the estimates of conditional variance pro-
vide error bars, indicating the uncertainty of model predictions
[20–22]. Secondly the output of the model now completely
specifies the target distribution, so the regularisation parameterA

is no longer necessary.

III. METHOD

Suitable training data were derived from a range of synthetic
models of buried wall foundations of a variety of types
and burial depths and the corresponding magnetic responses
produced via forward modelling. The synthetic models were
based upon known archaeological examples recorded in a
number of trial excavations conducted within the study area, in
which surviving wall foundations were found to be the dom-
inant feature of interest. The forward modelling of magnetic
responses corresponding to each model was undertaken using
software developed by the University of British Columbia
under a consortium research project [23]. The measurable
distribution of magnetisation / caused by a buried anomalous
feature, such as a wall foundation, is proportional to the
magnetic susceptibility of the feature, 0 , within the inducing
magnetic field of the earth, 132 , i.e./ � 04152 � (8)

see [23]. The resulting anomalous magnetic field as a result of
the magnetism of the feature, / , is calculated by the following
integral equation, see [23]687 	:9V� � . �; N q=<?>@> /9 4 9BA ` /DCFE (9)

where 9 is the location of the observation, . 2 is the perme-
ability of free space and G is the volume of the magnetising
feature. Each model is generated within a 3D orthogonal
mesh of cuboidal cells representing the earths sub-surface,
by defining the magnetic susceptibility of each cell. The
resulting anomalous magnetic field is then measured at a series
of equally spaced observation points at a height above the
modelled surface, the resulting magnetic field being the sum
of fields produced by all cells having a non-zero susceptibility
value [23]. Appropriate values of the magnetic susceptibility
of modelled walls and associated deposits were derived from
laboratory measurements of representative building materials.

The modelled data was input into the network as a vector
of magnetic field values, representing an effective 2 metre by
2 metre area above the subsurface model. The corresponding
target data consisted of a single value representing the depth
below the surface to the modelled wall features, falling at the
centre of the input magnetic field values. Subsequent training
pairs were derived by moving the 2 x 2 metre input window
sequentially over the modelled area. Noise sampled from the
magnetic survey data was then added to the training data to
create a more realistic response, following the method outlined



by Schollar (1970) [24]. The Fourier transform of sampled
magnetic noise is randomised by computing the modulus and
the angle of the transform, and adding a randomly distributed
number to the angle, and recalculating the Fourier coefficient.
When the inverse transform is taken, the resulting noise
anomalies retain the power spectrum of the original, but in
differing distributions [24].

Some pre-processing of the input training data as also
undertaken to enhance spatial symmetry of the magnetic data
and introduce rotational invariance. A reduction to the Pole op-
erator was applied to the magnetic data to improve the overall
symmetry of magnetic anomalies. This operation transforms
the magnetic response caused by an arbitrary source into the
magnetic anomaly that the same source would produce if it
were located at the Earth’s (north) pole, where the inducing
magnetic field is vertical. Rotational invariance was introduced
in order to reduce the amount of training data required to
represent all possible wall orientations. This was achieved by
computing the mean average of a series of concentric rings
centred upon each 2m by 2m square of input data, effectively
deriving a rotationally invariant input representation. In addi-
tion a range of training data representing unwanted magnetic
responses such as those caused by modern land drains were
added to the training data set, with corresponding null target
data.

IV. RESULTS

The synthetic data used in training and testing the neural
network geophysical interpretation system is based on an
excavated building from the Butrint site. The synthetic remains
are shown in figure 2 (a), along with geomagnetic survey data
simulated via forward-modelling, as described in the previous
section (b) and predicted subsurface features (c). The root-
mean-square error for the test set is 0.25m.

Figure 3 shows the geomagnetic survey of an outlying
single phase Roman building (i.e. it represents a single phase
of cultural activity) (a), along with a shaded relief plot of
predicted subsurface remains (b) and picture of a trial trench
(c) excavated within the same area. The building is located ap-
proximately 100m to the north east of the main suburb shown
in figure 4. The shaded relief plot gives strong indication of
the structure of the surviving wall foundations of the building,
partially verified by the excavation of a small trench, providing
some “ground truth” data. The RMS error for the predicted
depth of buried remains in this trench is 0.23m, which is
an acceptable level of accuracy for archaeological purposes
(figure 3 (c) shows the remains following the removal of a
comparable amount of loose material).

Figure 4 shows the raw geomagnetic survey data (a) and
shaded relief plot of predicted subsurface remains (b) overlaid
onto a satellite image of the study area. Clearly the shaded
relief plot gives a far more vivid impression of the buried
structure than the raw geomagnetic data. This type of result is
likely to be very helpful in encouraging public understanding
of cultural heritage sites. The model can be seen to predict
significantly more shallow burial depths for remains centred

(a)

0

10

20

30

40

0

10

20

30

40

−2

−1

0

(b)

(c)

0

10

20

30

40

0

10

20

30

40

−2

−1

0

Fig. 2. Synthetic test data based on excavated building from the Butrint site
(a), example simulated geomagnetic survey data (b) and subsurface features
predicted by neural network model (dimensions in metres).

around the north western portion of the survey, a result
which was later confirmed by a series of boreholes. Although
topographically flat today, this area is formed upon a raised
gravel bank, and was once a natural topographical high. The
shallower burial depths over this area seem to relate to the
thinner cover of alluvial deposits. It is also possible that
the shallower wall depths reflect prolonged occupation of the
higher ground, less prone to flooding events during periods
of increased sea level, known to have occurred during the 5th
century AD.
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(a) (b) (c)

Fig. 3. Geomagnetic survey of outlying single phase Roman building (a), shaded relief plot of predicted subsurface remains (b) and ����� metre trial trench
excavated (c) corresponding to area marked on (a) and (b).

(a) (b)

Fig. 4. Raw geomagnetic survey data (a) overlayed onto a pan-sharpened satellite image (copyright DigiGlobe 2002) of the Butrint site and (b) shaded relief
plot of the depth predictions from neural network committee.

V. CONCLUSION

Geophysical surveys have become a integral component of
modern archaeology, however the resulting data is rarely fully
exploited, often being used only to give and indication of the
location and extent of buried remains. In this study we have
investigated the use of artificial neural networks for further
interpretation of geomagnetic survey data to give an indication
of the depth of surviving wall foundations. Initial results for
a survey of a Roman suburb of the classical city of Butrint

appear highly promising. The authors hope that this work
will prove particularly useful in encouraging public interest in
the archaeology of landscapes, which would otherwise appear
featureless, such as that shown in figure 1. This is especially
important for world heritage sites such as Butrint where large-
scale excavation is not permitted.
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