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Abstract

Asymmetric margin error costs for positive and negative
examples are often cited as an efficient heuristic com-
pensating for unrepresentative priors in training support
vector classifiers. In this paper we show that this heuris-
tic is well justified via simple resampling ideas applied
to the dual Lagrangian defining the 1-norm soft-margin
support vector machine. This observation also provides
a simple expression for the asymptotically optimal ratio
of margin error penalties, eliminating the need for the
trial-and-error experimentation normally encountered.
This method allows the use of a smaller, balanced train-
ing data set in problems characterised by widely dis-
parate prior probabilities, reducing training time. We
demonstrate the usefulness of this method on a real world
benchmark problem, that of predicting forest cover type
given only cartographic data.

1 Introduction

It is not uncommon in statistical pattern recognition
tasks to encounter training data characterised by prior
class probabilities that are not representative of the ex-
pected operational priors. This may be because the class
priors vary in time or space, for instance the incidence
of heart disease has been observed to vary geographi-
cally, due perhaps to differences in diet, or the frequency
and severity of El Nifio events may (or may not) be in-
creasing with time due to climate change. Rather than
include variables that capture the underlying causes of
these variations, and risk incurring the curse of dimen-
sionality, it may be more appropriate to modify the
training procedure in some way to compensate for the
difference in training set and operational priors in dif-
ferent situations.

Perhaps the most common reason for using a training
set with unrepresentative priors is simply for computa-
tional expediency in classification problems with widely
disparate prior probabilities, for instance the diagnosis
of a rare medical disorder. In this case, a data set of
a sufficient size to adequately characterise the statisti-
cal distribution of infrequently made positive diagnoses
might require an enormous number of negative examples
in order to accurately reflect the expected operational
priors. Training time for many statistical classifiers can
be greatly reduced in these circumstances if the classi-
fier is trained on a smaller, balanced data set containing
an equal number of positive and negative examples. The
training algorithm must then be modified to compensate
for the disparity in training set and operational priors.

Several techniques used to compensate for unrepresen-
tative training set prior probabilities have been available
for some time for conventional multi-layer feed-forward
neural networks; approaches include scaling network
outputs, resampling the training data, scaling weight
updates and scaling target values used in training [1-
3]. In this paper we describe a simple, computation-
ally efficient modification to the Support Vector Ma-
chine (SVM) classifier, based on notional replication of
training patterns, allowing adjustment of training set
priors. This is shown to be equivalent to the well-known
heuristic that assigns asymmetric margin error costs to
positive and negative examples.

2 Support Vector Pattern Recognition

The support vector classification method [4, 5], given la-
belled training data,

D= {(Xiayi)}le , X3 € X C Rn; Yi € {_17+1}7

constructs a maximal margin linear classifier in a high
dimensional feature space ®(x), defined by a positive



definite kernel function, k(x,x'), specifying an inner
product in the feature space, ®(x) - ®(x') = k(x,x’').
The function implemented by a support vector machine
is given by

¢
f(x) = {Z aiyik(xiux)} —b. (1)

To find the optimal coefficients, «, of this expansion it
is sufficient to maximise the functional,

¢ ¢
1
W(a) = Zai ~3 Z viyjoiaik(xi, x;),  (2)

i=1 i,j=1
in the non-negative quadrant,

0<e;<C, i=1,...,¢,

subject to the constraint,

¢
Z a;y; = 0. (3)
im1

C is a regularisation parameter, controlling a compro-
mise between the complexity of the function imple-
mented by the support vector machine and training set
accuracy. Generally only a small number of Lagrange
multipliers, «, will have non-zero values; the correspond-
ing input patterns are known as support vectors. Let 7
be the index set of training patterns with non-bound
Lagrange multipliers,
T=1{i 0<al <0},
and similarly J represent the set of patterns with mul-
tipliers at the upper bound C,
J =i a) =C}.

(1) can then be written as an expansion over support
vectors,

f) =8 > aiwik(xi,x) p —b.

ie{Z,J}

For a full exposition of the support vector method,
see Vapnik [6,7], Christianini and Shawe-Taylor [8], or
Burgess [9].

3 Dealing with Unrepresentative Priors

In this section we demonstrate a simple method to com-
pensate for training data, D, characterised by prior

probabilities that are not representative of the expected
operational priors. Consider a dataset D', consist-
ing of (; replicates of the i** pattern comprising D,
i =1,2,...L. Symmetry arguments indicate that two or
more training patterns belonging to the same class and
sharing the same input vector may also share Lagrange
multipliers in the support vector expansion maximising
the functional given in equation 2. Note there remains
at most £ distinct Lagrange multipliers in the optimal
support vector expansion for D'. Therefore to find the
optimal support vector expansion for this dataset, it is
sufficient to maximise

¢ ¢
1
W(a) = ZQ%’ —3 Z GGaiasyiy;k(xi, x;),  (4)
i=1 i,7=1
in the non-negative quadrant,
0<a; <C, i=1,2,...,¢, (5)

subject to the modified constraint

¢
> Giouys = 0. (6)
i=1

The i** support vector will be also be replicated ¢; times,
so the output of the support vector machine is as follows:

¢
fx) = {ZCiaiyik(xi,x)} —b.

To compensate for a discrepancy between training set
and operational priors, the weighting factor (;, for the
ith training pattern of D, is given by

_ po(ci)
pe(CY)’

where p;(C?) is the a-priori probability of class C¢ en-
countered in the training set and p,(C?) is the opera-
tional prior for C?, where C? is the class to which the §t*
training pattern belongs.

Gi

Note that following a change of coordinates, such that
of = a;¢, the solution to the optimisation problem
given by equations 4-6 is equivalent to the original op-
timisation problem (equations 2 and 3, substituting o}
for all occurrences of «;), subject to the the modified
box constraint

0<al <GC, i=1,2,...,0L
The existing heuristic that assigns different margin error
penalties to positive and negative training examples is
therefore equivalent to resampling the training data to
reflect the expected operational priors (c.f. [10,11]).



3.1 Asymmetric Misclassification Costs

In the case of binary classification, for any risk func-
tional that is a linear combination of penalties for each
observation, the imposition of asymmetric false-positive
and false-negative misclassification costs is equivalent to
an unequal replication of positive and negative training
examples. Consider a generalised empirical risk func-
tional,

4
R = 7 D0 a0, (x1,)), (7)
=1

where ¢; is the cost associated with the error for pat-
tern i. For binary pattern recognition, where y;, f €
{-1,+1}, typically

ﬂ%ﬂ&M)Z{% z;ﬁ23$

To implement asymmetric misclassification costs for
positive and negative examples,

+ oy =
Ci:{ ¢ Yi +1

c” yi=-1"

where ¢t is the cost associated with false-negative and
¢~ the cost associated with false-positive misclassifica-
tions. Clearly the generalised risk functional given by
equation 7 is equivalent to the standard empirical risk,

[/
1
REmp = F E 0(yi7f(xi7a))7
i=1

evaluated over a second dataset consisting of ¢* repli-
cates of each positive training example and ¢~ replicates
of each negative example.

4 Results

The Forest Cover Type benchmark problem, available
from the UCI KDD Archive [12], provides a good test of
methods used to compensate for unrepresentative train-
ing set priors. The classification task is to predict the
forest cover type (seven classes), for 30m x 30m cells,
given only cartographic data [13]. The input vector for
each pattern is comprised of ten continuous variables (at
least some of which are quantised) and two categorical
variables; soil type (forty classes) and wilderness area
designation (four types).

An interesting feature of this dataset is the great dispar-
ity in prior probabilities, as shown in table 1. The num-
ber of examples of the class best represented in the data
set (Lodgepole Pine) is over two orders of magnitude

greater than that of the least well represented (Cotton-
wood/Willow). As a result the originators of the dataset
have partitioned the data into a training set, containing
1620 examples of each class, a validation set for model
selection, containing 540 examples of each class, and a
test set containing the remaining patterns. Support vec-
tor machines can be used to implement a near optimal
classifier for this task, providing the disparity between
training and test set priors can be accommodated. Note
that due to the balanced selection of patterns for the
training and validation sets, the prior probabilities en-
countered in the test set are even more unbalanced than
the assumed population priors given in table 1. For ex-
ample the prior probability for Lodgepole Pine increases
to 0.4968, while the prior for Cottonwood/Willow falls
to 0.001 (almost a five-fold reduction!). This gives some
cause for concern that the test set incorporates a strong
bias towards classes with a high prior probability.

Table 1: Number of examples and operational prior for
each forest cover type.

Cover Type Patterns | Prior
Spruce-Fir 211840 | 0.3646
Lodgepole Pine 283301 | 0.4876
Ponderosa Pine 35754 | 0.0615
Cottonwood /Willow 2747 | 0.0047
Aspen 9493 | 0.0163
Douglas-Fir 17367 | 0.0299
Krummbholz 20510 | 0.0353
Total | 581012 |

As this is a multi-class problem, we adopt the pairwise
classification approach [14,15]. An n-class classifier is
constructed from k = n(n — 1)/2 two-class classifiers,
one for each distinct pair of classes. An input pattern is
classified as belonging to the class receiving the largest
number of votes. The prior adjustment method can be
applied to each two-class classifier on an individual ba-
sis. Before training, the continuous independent vari-
ables were standardised to have a zero mean and unit
variance over the training set. The categorical variables
remained in the raw 1l-of-c coding scheme used in the
benchmark dataset (a value of 1 indicating that a fea-
ture is present, a value of 0 indicating a feature is not
present). A Gaussian radial basis function was used as
the kernel function in each network,

k(x,x') = e =x1I*

Support vector machines trained using a range of values
for both the kernel width, v, and regularisation con-
stant, C. The best networks for each of the 21 two-class



problems were selected to minimise the number of clas-
sification errors over the validation set. For networks
trained using prior adjustment, the errors on the valida-
tion set were also weighted according to the operational
priors for consistency. All networks were trained using
a MATLAB implementation [16] of a modified version
of Platt’s Sequential Minimal Optimisation (SMO) al-
gorithm [17,18].

The pairwise classifier constructed using the standard
sequential minimal optimisation algorithm achieves an
accuracy of 0.7220 over the test set. This result is a
minor improvement over the figure of 0.71 quoted in
Platt et al. [19]. This difference can be explained by the
individual selection of kernel width and regularisation
parameters for each two-class network. Table 2 shows a
confusion matrix for the standard pairwise classifier over
the test set, the Cottonwood/Willow class is of particu-
lar interest. A larger number of Ponderosa Pine patterns
are misclassified as being Cottonwood/Willow than Cot-
tonwood/Willow patterns are classified correctly. This
is entirely due to unrepresentative training set priors. A
similar story is true of Aspen/Lodgepole Pine.

The pairwise classifier constructed using the modified
sequential minimal optimisation algorithm achieves an
accuracy of 0.7341 over the test set. Table 3 shows a
confusion matrix for this classifier compiled over the test
set. Clearly the classes with the lowest prior probabil-
ities now claim far fewer test set patterns belonging to
more common classes, especially in the case of Cotton-
wood/Willow and Aspen, indicating the success of the
prior adjustment procedure. It is important to note that
the prior probabilities were adjusted in accordance with
the assumed population priors given in table 1. There
is however, an even greater disparity in prior class prob-
abilities encountered in the test set, and so a greater
improvement in test set performance might be expected
if training set prior probabilities were adjusted to match
the measured test set priors. This is indeed the case for
Forest Cover dataset, achieving a test set accuracy of
0.7355. Of course the use of direct measurements from
the test set during the training procedure is improper,
as it corrupts the statistical purity of the test set.

This highlights a subtle error that can be introduced
by selecting a balanced training set. We recommend
that if a balanced training set is to be used, it should
be selected as follows: first divide the available data
into two segments. The first segment forms the test set;
the second segment is used firstly to estimate the true
operational priors, and the to draw the patterns used
to form a balanced training set. This ensures that the
test set remains representative of the true operational

priors, while providing as estimate of the operational
priors that is independent of the test set.

5 Summary

The main contribution of this paper is a simple justi-
fication of an existing heuristic used to compensate for
unrepresentative training set prior class probabilities in
support vector pattern recognition. It is shown that the
use of unequal penalties for the margin errors associ-
ated with positive and negative examples is equivalent
to a resampling of the training data such that it re-
flects the true operational priors. This observation also
provides an expression for the optimal ratio of margin
error penalties. It is also shown that the use of unequal
misclassification costs [1,20,21] can be accommodated
by resampling the training data and so can also be im-
plemented by unequal margin error penalties. The ef-
fectiveness of this procedure is demonstrated on a large,
real world pattern classification task, the UCI cover type
prediction problem. The test set accuracy of 0.7341 ap-
pears to be the best result achieved for this benchmark
to date.

If the proposed method is used to permit faster train-
ing using a smaller, balanced training set, care must
be taken in selecting the examples drawn from each
class. For support vector machines we would like to
select those patterns closest to the optimal decision sur-
faces between each class. We are faced with a trade-off
between achieving adequate coverage of the class bound-
aries (improving generalisation) and minimising size of
the training set (improving training time).

The technique we have described assumes that the em-
pirical distribution implied by the training data is an
accurate representation of the underlying distribution
from which the data were drawn. Clearly the precision
with which a-priori probabilities are adjusted might be
expected to improve asymptotically as the size of the
training set increases.
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