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ABSTRACT

A multi-layer perceptron (MLP) similar to that
used in the NETtalk system is used to form a
mapping between sequences of allophones and
corresponding frames of LPC synthesizer con-
trol parameters. Three parameter sets equiva-
lent to the LPC coe�cients, line spectral pair
(LSP), PARCOR and log area ratio, are evalu-
ated. In addition to training a standard MLP,
networks which have been decomposed accord-
ing to phonetic class and by allophone, are
trained. Decomposition is found to reduce train-
ing time and produce greater accuracy on the
training set, however the network decomposed
by allophone is found to receive to few training
patterns too generalise properly on new data.

INTRODUCTION

In continuous speech the boundaries between
allophones are not distinct but are consider-
ably blurred, an e�ect known as coarticulation
(O'Shaughnessy [1]), caused by the inertia of ar-
ticulators such as the lips and tongue. Coartic-
ulation can also be caused by articulators posi-
tioning themselves in anticipation of subsequent
allophones during production of the current allo-
phone. Coarticulation carries little of the mean-
ing of an utterance, however we subconsciously
expect to hear its e�ects in natural speech. Our
research has been concerned with the use of neu-
ral networks to model the e�ects of coarticula-
tion in synthetic speech.

Linear predictive coding (LPC) (Rabiner and
Schafer [2]) attempts to �nd the coe�cients ak
of an all pole �lter, with transfer function H(z),
such that its spectral properties are optimally
similar to that of a segment of sampled speech.
Given a suitable excitation signal, speech can
be reconstructed from these coe�cients, which
must be updated roughly every 10ms to allow
for the time varying nature of speech. For

voiced speech the excitation signal can be ap-
proximated by a train of impulses, and for un-
voiced speech by random noise.
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This paper describes the training of neural net-
works for speech synthesis through generation of
LPC parameters corresponding to a sequence of
allophones. Unfortunately LPC coe�cients are
not themselves suitable for training neural net-
works as they are highly sensitive to error. Small
changes in the predictor coe�cients can lead to
large changes in the spectral properties of the
synthesis �lter, at worst leading to instability.
The LPC coe�cients must be transformed into
an equivalent parameter set with more suitable
properties. The PARCOR [2] and log area ra-
tio (Viswanathan and Makhoul [3]) parameter
sets are widely used in low bit rate coding of
speech and have also been used in training neu-
ral speech synthesizers.
Line spectral pair (LSP) (Sugamura and

Itakura [4]) representation is an equivalent pa-
rameter set found to have excellent quantization
and interpolation properties for use in low bit
rate coding. These properties have also been
found to be useful in our research in training
neural networks for speech synthesis. Line spec-
tral pair coding records the frequency of the ze-
ros of two polynomials P (z) and Q(z) which are
related to the predictor polynomial A(z) by the
following equations:
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Where p is the order of polynomial A(z)

The zeros of P (z) and Q(z) lie on the unit
circle in the z plane, and this reduction in the
search space allows e�cient root �nding meth-
ods to be employed (the roots of A(z) can also
form a useful parameter set, however the root-
�nding process is computationally expensive).
For the synthesis �lter to be stable, the zeros of
P (z) alternate around the unit circle with the
zeros ofQ(z) (see Figure 1). The overall spectral
sensitivity of LSP parameters is less than that
of PARCOR and log area ratio parameters, and
also the spectral sensitivity of individual LSP
parameters are uniform whereas low order PAR-
COR parameters exhibit higher sensitivities.

Large arti�cial neural networks with large
training sets inevitably take many hours, even
days to train satisfactorily on current worksta-
tions. In order to take full advantage of a
number of workstations which lie largely un-
used overnight, the decomposition of the neu-
ral network is investigated. Lateral decomposi-
tion has been found to reduce the training time
and to converge with greater accuracy (Lucas et
al. [5])). This paper presents results of an exper-
iment in which a network is decomposed into a
number of sub-networks each of which produce
a di�erent type of speech sound.

NETWORK ARCHITECTURE

An network architecture similar to that used
in the NETalk (Sejnowski and Rosenberg [6]))
system was employed (see Figure 2). The in-
put layer forms a sliding window over the input
stream of tokens representing allophones. The
input layer consists of three groups of neurons
which represent the current allophone and the
previous and subsequent allophones to provide
partial context. Each allophone is represented
by a vector of articulatory features such as pho-
netic class, stress and place of articulation. In
addition one input neuron is used to indicate
the duration of the current allophone and an in-
dex neuron is used to indicate how much of the
current allophone has already been generated.
In order to synthesize speech parameters for a
complete allophone, the input layer is set to the
appropriate pattern for the central and context
allophones and the required duration. A ramp
input is then applied to the index neuron. As
the index increases, the outputs of the network
step out the parameters required to synthesize

the allophone.

TRAINING

All ten sentences from one speaker in the TIMIT
database (NTIS [7]) were analysed using tenth
order LPC analysis. Eight sentences were used
in training and two sentences reserved for test-
ing. Three systems were trained, the �rst a
conventional MLP with 100 hidden layer neu-
rons, the second an array of smaller networks,
each with 30 hidden layer neurons, trained to
produce allophones belonging to one of seven
phonetic classes: a�ricates, fricatives, plosives,
nasals, liquids, vowels and miscellaneous. The
third system was comprised of one network per
allophone, each network containing 15 hidden
layer neurons. Each system was trained using
LSP, PARCOR and log area ratio data. The
networks were trained using a backpropagation
algorithm on a number of Sun Sparcstations us-
ing a simulator written in C.

RESULTS

Decomposition of neural networks has been
found to greatly reduce training time, each net-
work requires fewer hidden layer neurons and
has a smaller training set. Training can also
be performed in parallel if a number of work-
stations are available. The results obtained are
displayed in Figure 3, which shows RMS er-
ror against cycles trained for a standard MLP
and networks decomposed according to pho-
netic class and by allophone. Decomposition can
clearly be seen to improve performance on the
training set, the greater the decomposition the
simpler the learning problem for each network
becomes, the better the results obtained. The
more important results obtained on the test set
suggests that some decomposition is bene�cial,
but that a network can clearly be decomposed
too far. Our interpretation of this result is that
the greater the decomposition, the fewer train-
ing examples are presented to each network, so
eventually the network sees too few examples to
generalise those it has seen correctly. The re-
sults were obtained using networks trained us-
ing LSP data, similar results are obtained using
PARCOR and log area ratio data.

Figure 4 shows a graph of spectral distortion
against cycles trained for networks trained us-
ing LSP, PARCOR and log area ration data.
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It can be seen that best performance on both
training and test sets is obtained using LSP
data, followed by log area ratio and lastly PAR-
COR data. The results shown were obtained
using networks decomposed by allophone, sim-
ilar results are obtained using standard MLPs
and networks decomposed according to phonetic
class. The results con�rm those obtained during
initial experiments indicating the superior quali-
ties of LSP parameters for use in training neural
speech synthesizers (Cawley and Noakes [8]).

CONCLUSIONS

We have shown LSP coding to be superior to
the PARCOR and log area ratio parameter sets
for use in training neural networks for speech
synthesis. Decomposition of neural networks is
found to be a useful approach for reducing train-
ing time and exploiting opportunities for par-
allelism. The decomposed network converges
more quickly and more accurately than a con-
ventional MLP, however a highly decomposed
network will require a substantially larger train-
ing set in order to maintain performance on new
utterances.
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Figure 1: Relation between roots of A(z), P (z) and Q(z)
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Figure 2: Schematic drawing of network architecture
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Figure 3: Graph of RMS error against cycles trained for standard multi-layer perceptron (MLP),
MLP decomposed according to phonetic class (PC-DMLP), and MLP decomposed by allophone
(A-DMLP), trained using LSP data. Results obtained on both training and test sets are plotted
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Figure 4: Graph of spectral distortion (dB) against cycles trained using LSP, PARCOR and Log
Area Ratio data. Results obtained on both test and training data sets are plotted
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