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ABSTRACT

A neural network is used to generate control param-
eters for a parallel formant speech synthesizer, corre-
sponding to a sequence of allophone tokens. Training
is to be accomplished using formant data obtained
from both natural and synthetic speech. It is in-
tended that theories of cognitive phonetics, currently
being developed in the Department of Language and
Linguistics at the University of Essex, will be used
in order to improve the modelling of coarticulation.

INTRODUCTION

Speech is produced as the result of a coordinated se-
quence of movements of articulators such as the lips
and tongue. For a given language there exists a set
of discrete speech sounds known as phonemes which
serve to distinguish one word from another. Each
phoneme can be described by the set of articulatory
gestures by which it is produced. Providing this does
not con
ict with the gestures required to produce
the current phoneme, an articulator may begin to
postion itself before the end of the current phoneme
in preparation for production of the next. For in-
stance the lip rounding gesture required to produce
the vowel u in the word `coup' (ku) intrudes into
and may even begin before the preceding plosive
k. This anticipatory movement of articulators and
therefore of the formants (the spectral properties of
the speech signal) is known as coarticulation. Coar-
ticulation can also occur as a continuation of the
motion required to produce the �rst phoneme into
the second. An allophone is one of a set of speech
sounds regarded as variants of the same phoneme,
the di�erences in their realization being due to coar-
ticulation. For instance both the aspirated /p/ in
`pot' and the unaspirated /p/ in `spot' are both al-
lophones of the phoneme p. The human auditory
system has adapted to expect this variation to be
present in natural speech, which when inadequetely
modelled or absent, cause synthetic speech to sound
unnatural [1]. Furthermore we speak more clearly
when one word may easily be confused with another,
than when additional clues are available in the se-
mantic content of the message. This suggests that
coarticulation is not merely the result of the inertia

of articulators or the neurodynamics of the motor
neurons by which the commands are transmitted,
but is actively controlled as an aid to perception.
In conventional speech synthesis systems such as

the JSRU synthesizer [2], the e�ects of coarticula-
tion are modelled using the following procedure [3]:
First, for each of a pair of allophones, target values
for each parameter are selected from a table. An
ad-hoc set of rules is used to modify these targets
depending on the combination of allophones to be
modelled. One of a set of templates is then used
to interpolate these values to provide frames of for-
mant data at the required rate. Only coarticulation
occurring between individual pairs of allophones is
normally considered. The e�ects of coarticulation
can depend upon a much wider context, for exam-
ple in the phase `the toucan' the lip rounding in the
�rst vowel of `toucan' may cross the word boundary
to the preceding `the'.

NETWORK ARCHITECTURE

This paper proposes an alternative approach to pho-
netic modelling, in which computation of formant

contours is performed by a mulit-layer backpropa-
gation network (see Fig. 1) [4]. The network, along
with a small set of interface programs, emulates the
function of the lower phonetic task of the JSRU syn-
thesis by rule system. The input to the system is
in the form of a .plp [2] �le containing a list of allo-
phone names, with corresponding segment durations
and fundamental frequency targets. The system out-
put is a .soi �le [2] containing frames of formant data
for the Holmes parallel formant synthesizer.

The Input Layer

The input layer consists of two groups of neurons,
each representing an allophone within the input �le.
The desired output of the network represents the
change in the formant parameters during the transi-
tion between the allophones denoted by the neurons
in the input layer.
At present a simple seven bit binary code is as-

signed to each allophone used in the JSRU synthesis
by rule system. In future experiments, allophones
will be encoded as a pattern of activation over a set



of neurons representing articulatory features such as
the presence of voicing and place of articulation. In
this way e�ects of coarticulation extending further
than half way through an allophone will be modelled
by the partial activation of the neuron corresponding
to the coarticulated feature during the preceeding al-
lophones.

The Hidden Layer

Currently a single hidden layer is used, consisting
of an array of 64 neurons. Further experimentation
will be needed in order to determine the optimal
size of this layer. An acceptable compromise must
be reached between the acurracy with which formant
data is reproduced and the amount of generalization
which takes place. If the hidden layer is too large,
the network may simply act as a lookup table, a large
training set will then be required as little phonetic
knowledge is reproduced through generalization. If
the hidden layer is too small, too much generaliza-
tion will take place, whilst most allophones will be
accurantly reproduced, important exceptions will be
ignored.

The Output Layer

The output layer consists of ten groups of six neu-
rons. Each group corresponds to one of the eleven
variable control parameters of the Holmes parallel
formant synthesizer. Fn, the frequency of the nasal
formant is omitted as this may remain constant with-
out adversely a�ecting the quality of the speech pro-
duced. The trajectory described by each parameter
during the transition between successive allophones
is encoded in the form of a set of six sample val-
ues. Three samples are taken at uniform intervals
from adjacent halves of each allophone (see Fig. 2).
This decision is based on the assumption that rapid
parameter changes are more likely to occur during
transitions to and from short allophones than long.
In order to capture rapid parameter transitions the
intervals between samples must be small, therefore
a higher sampling rate should be used during short
segments. The intervals between samples vary ac-
cording to the duration of each segment, and so a
cubic spline is used to interpolate between samples
to generate frames of formant data at the required
rate.

TRAINING

Extensive use is made of formant data obtained from
synthetic speech as this may easily be generated in
large quantities. From this the network will be able
to learn the basic form of formant transitions be-
tween pairs of allophones. Data obtained from nat-
ural speech is a di�cult and time consuming pro-

cedure [5, 6]. Formant transcriptions of utterances
of natural speech are required in order for the net-
work to learn the e�ects of coarticlation which are
not adequately modelled in synthetic speech.
Training is performed using Ansim, a neural net-

work training package, running on an SAIC Sigma
neurocomputor workstation, comprising of a 486
PC compatible microcomputer and an SAIC delta
2 
oating point array processor. This provides
a throughput during backpropagation learning of
about .4 million connections per second. The nor-
malization facility provided by Ansim was used to
normalize the input and output data before train-
ing, to values between �0:5 and 0.5.

RESULTS

Initial results indicate that the e�ects of coarticula-
tion can be modelled e�ectively by a neural network
such as that presented in this paper.
A neural network has been trained to pronounce

the words pit, pat, pot, put, putt, bit, bat, bot, but
and butt. The subjective quality of the speech pro-
duced is similar to that of the JSRU speech synthesis
by rule system from which the training data was ob-
tained (see Fig. 3). This experiment provides a good
test of the network's ability to model coarticulation,
as the di�erence between allophones /p/ and /b/ are
quite subtle.
Work is currently under way to extend the train-

ing data to provide modelling of other allophones in
order to produce a more general speech synthesizer.
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Figure 1: Schematic drawing of network architecture.
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Figure 2: Example of a parameter contour for the transition between adjacent allophones, generated using
a cubic spline (a) to interpolate between samples taken from the output of the JSRU synthesizer (b).
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Figure 3: Frequency contour of the �rst formant for the word `pit' (a) as produced by the JSRU synthesizer
and (b) as reconstituted using a cubic spline from samples generated by the network (shown displaced by
50Hz for clarity).
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Figure 4: Graph of maximum output error against number of cycles through the training set.
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Figure 5: Graph of RMS error against number of cycles through the training set.


