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ABSTRACT

Vector quantisation (VQ) is a method widely used in low

bit-rate coding and transmission of speech signals. Unfor-

tunately, a single bit error in the transmitted index, due to

noise in the transmission channel, could degrade perceived

speech quality at the receiver quite dramatically, as the ref-

erence vector retrieved by the corrupted index may di�er

greatly from the vector corresponding to the intended index.

The index assignment (IA) process (an NP-complete combi-

natorial optimisation problem) attempts to re-order the code

book to minimise the e�ects of single-bit errors, but gener-

ally only at considerable computational expense. This paper

presents an improved vector quantisation algorithm, based

on Kohonen's Self-Organising Feature Map (K-SOFM), that

jointly optimises the quantisation error and resistance to

noise in the transmission channel. This is achieved using

a neighbourhood function based on the Hamming distance

between code book indices, rather than the normal Euclidean

distance across a two dimensional feature map. As a result,

similar reference vectors are recalled by indices with simi-

lar binary patterns, minimising the e�ect of errors in the

transmitted index introduced by noise in the transmission

channel.

1. INTRODUCTION

Given p-dimensional, unlabelled data X = fx1; : : : ;xMg �
<p representative of a data manifold V � <p, the process of
vector quantisation [1] attempts to partition V into a num-

ber of subregions Vi using a �nite set of reference or \code

book" vectors W = fw1;w2;w3; : : : ;wNg � <p. such that

an input vector v 2 Vi is mapped onto the most similar ref-

erence vector wi. The values of reference vectors are chosen

so as to minimise the quantisation error, measured according

to a distance metric, between a training vector xi and the

best matching reference vector w(xi)
over all vectors in X.

The incoming vector can then be represented approximately

by the index i, resulting in a considerable reduction in the

required bit rate. Vector quantisation is however very sen-

sitive to errors in the transmitted codeword, due to noise in

the transmission channel, as the reference vectors recalled by

the intended and corrupted indices might be very di�erent.

The index assignment (IA) process attempts to re-order the

code book, such that similar reference vectors are recalled by

indices with similar binary patterns [2]. This minimises the

e�ect of an error in the transmitted code word, as the refer-

ence vector corresponding to the corrupted index is made as

similar as possible to the reference vector represented by the

intended index.

2. METHODOLOGY

The Kohonen self-organising feature map (K-SOFM) is a

data visualisation algorithm (Kohonen [3, 4]), typically con-

sisting of a two dimensional array of neurons, each of which

computes the Euclidean distance between the input vector

and the neuron's \weight" vector. During each cycle of the

iterative training procedure, an input pattern is chosen at

random from the training set and presented to each neuron

in turn. The neuron that responds most strongly is declared

the winner. The weights of the winning neuron are then

updated according to the following update rule:

wj(t+ 1) = wj(t) + �(t)[x(t)�wj(t)]:

In addition, the weights of the neurons in the spatial neigh-

bourhood of the winning neuron are also updated according

to the same rule. In this way, the network forms a topology

preserving map of the input space, where neurons in similar

positions in the map represent regions that are close together

in the input space.

The Hamming learning vector quantiser [5, 6] (Algorithm 1)

is an extension of the Kohonen self-organising feature map,

in which the neurons comprising the neighbourhood of the

winning neuron are selected according to the Hamming dis-

tance between their indices and the index of the winning

neuron. This is equivalent to a Kohonen self-organising fea-

ture map, with 2n neurons, arranged as an n-dimensional

hypercube with a neuron at each vertex. The resulting fea-

ture map is organised such that similar input vectors are

mapped onto neurons represented by indices with similar bi-

nary patterns. The weight vectors of each neuron represents

a reference vector of an ordered codebook, suitable for use

in vector quantisation for transmission over a noisy channel.



1. Given initial code book estimate

W = fw1;w2; : : : ;wNg � <p,
p dimensional training data

X = fx1;x2; : : : ;xMg � <p,
and neighbourhood size �

2. For each i 2 f1; 2; : : : ;Mg
3. For each j 2 f1; 2; : : : ; Ng

4. Calculate the output of neuron j for

training vector xi:

oj = kwj � xik

=
pPp

k=1
(wjk � xik)2

5. Select neuron with the greatest output:

owinner =argmax
k

(ok)

6. For each j 2 f1; 2; : : : ; Ng
7. if dHamming(winner; j) � �

wj(t+ 1) = wj(t) + �(xi �wj(t))

8. if
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(xi �wj)
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� = � � 1

9. if � � 0 return to step 2

Algorithm 1: The Hamming learning vector quantiser.

3. RESULTS

For evaluation, codebooks of 256 reference vectors were

compiled, from data obtained from line spectral pair

(LSP) [7] analysis of speech from the DARPA/TIMIT [8]

speech corpus, using the Hamming learning vector quantiser

and a two-dimensional Kohonen self-organising feature map.

The reference vectors found using the Hamming learning

vector quantiser were also re-ordered randomly, to destroy

any correlation between reference vectors and their indices,

and also re-ordered using a random pairwise interchange

algorithm with simulated annealing [6]. The normalised

sample cross correlation of the Hamming distance between

code book indices and the Euclidean distance between the

corresponding reference vectors wi, provides a measure of

the order within the codebook.

Correlation =
he� �h�ep

(h2 � (�h)2)(e2 � (�e)2)

where

hij = hamming distance between i and j

eij = kwi �wjk

and � denotes the mean, for example,

�h =

Pn

i=1

Pn

j=1
hij

n2

he =

Pn

i=1

Pn

j=1
hijeij

n2
:

Table 1 shows the normalised sample cross-correlation for

each codebook. The Hamming learning vector quantiser

achieves a substantially higher correlation than the two-

dimensional Kohonen self-organising feature map, and also

higher than the codebook re-ordered using a random pair-

wise interchange algorithm with simulated annealing, even

though a very lengthy cooling schedule was employed.

Method Correlation

Random 0.027907

K-SOFM 0.303807

Simulated Annealing 0.320980

HLVQ 0.360483

Table 1: Normalised sample cross correlation for randomly

ordered code books, and for codebooks reordered using sim-

ulated annealing, HLVQ and K-SOFM

Figure 1 shows a graph of mean error power between ref-

erence vectors against the Hamming distance of codebook

indices. The graph was created by simulating 1; 2; : : : 8 bit

errors in every possible bit position, for each reference vector

and noting the error power. It can be seen that, as expected,

the randomly ordered codebook shows very little change in

error power as the Hamming distance increases, so single bit

errors in the transmitted index lead to a similar amount of

spectral distortion as eight bit errors. Each vector quanti-

sation method, that includes an index assignment process,

substantially reduces the error power for single bit errors,

which are by far the most common type of transmission er-

ror. It can be seen that the error power for single bit errors is

lowest for the codebook generated using the Hamming learn-

ing vector quantiser.

4. ON THE UNDERLYING

DIMENSIONALITY OF THE

VECTOR SPACE

To determine the e�ect of the dimensionality of the data on

the correlation in conventional 2-D Kohonen self-organising

feature maps and the Hamming learning vector quantiser,

data sets were generated from randomly placed Gaussian

clusters in 1; 2; 3; : : : ; 10 dimensions. The Kohonen self-

organising feature map and Hamming learning vector quan-

tiser algorithms were then used to generate codebooks con-

taining 256 reference vectors for each data set. It can be

seen from Figure 2 that the highest correlation is achieved

when the dimensionality of the data space coincides with

the dimensionality of the codebook (two-dimensional for the

K-SOFM and eight-dimensional for the H-LVQ).

It would be sensible then, to employ a self-organising vec-

tor quantiser of the same dimensionality as the underlying

dimensionality of the data. Adler et al. [9] report the un-

derlying dimensionality of the speech space to be approxi-

mately four, i.e. the speech space can be viewed as the pro-

jection of a noisy four-manifold into the vector space formed



by the speech parameters. Clearly a four dimensional self-

organising feature map would be best suited to vector quan-

tisation of speech signals. The Hamming learning vector

quantiser is better suited to vector quantisation of signals

where the underlying dimension of the data is not known in

advance, or is very high, for instance in vector quantisation

image data.

5. CONCLUSIONS

A new combined vector quantisation and index assignment

algorithm is presented, the Hamming learning vector quan-

tiser, based on Kohonen's self-organising feature map. The

algorithm is applied to the task of robust vector quantisa-

tion of speech data for transmission over a noisy transmis-

sion channel. The index assignment achieved by the new

algorithm is shown to be better than that obtained using a

random pairwise interchange algorithm with simulated an-

nealing, or using the conventional Kohonen self-organising

feature map. The Hamming self-organising feature map how-

ever, due to the high dimensionality of the codebook, is bet-

ter suited to quantisation of data with a high underlying

dimensionality, such as image data.
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Figure 1: Graph of mean error power (dB) against Ham-

ming distance, for code books generated by a conventional

K-SOFM and the Hamming learning vector quantiser, an un-

ordered code book, and a code book re-ordered using simu-

lated annealing.
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Figure 2: Graph of normalised sample cross-correlation

against the intrinsic dimensionality of the training data, for a

conventional K-SOFM and Hamming learning vector quan-

tiser.


