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ABSTRACT

Vector quantisation (VQ) is a method widely used in low
bit-rate coding and transmission of speech signals. Unfor-
tunately, a single bit error in the transmitted index, due to
noise in the transmission channel, could degrade perceived
speech quality at the receiver quite dramatically, as the ref-
erence vector retrieved by the corrupted index may differ
greatly from the vector corresponding to the intended index.
The index assignment (IA) process (an NP-complete combi-
natorial optimisation problem) attempts to re-order the code
book to minimise the effects of single-bit errors, but gener-
ally only at considerable computational expense. This paper
presents an improved vector quantisation algorithm, based
on Kohonen’s Self-Organising Feature Map (K-SOFM), that
jointly optimises the quantisation error and resistance to
noise in the transmission channel. This is achieved using
a neighbourhood function based on the Hamming distance
between code book indices, rather than the normal Euclidean
distance across a two dimensional feature map. As a result,
similar reference vectors are recalled by indices with simi-
lar binary patterns, minimising the effect of errors in the
transmitted index introduced by noise in the transmission
channel.

1. INTRODUCTION

Given p-dimensional, unlabelled data X = {x1,...,zm} C
R? representative of a data manifold V' C R?| the process of
vector quantisation [1] attempts to partition V into a num-
ber of subregions V; using a finite set of reference or “code
book” vectors W = {w1, w2, ws,...,wy} C RP. such that
an input vector v € V; is mapped onto the most similar ref-
erence vector w;. The values of reference vectors are chosen
so as to minimise the quantisation error, measured according
to a distance metric, between a training vector x; and the
best matching reference vector w(,,) over all vectors in X.
The incoming vector can then be represented approximately
by the index i, resulting in a considerable reduction in the
required bit rate. Vector quantisation is however very sen-
sitive to errors in the transmitted codeword, due to noise in
the transmission channel, as the reference vectors recalled by
the intended and corrupted indices might be very different.

The index assignment (IA) process attempts to re-order the
code book, such that similar reference vectors are recalled by
indices with similar binary patterns [2]. This minimises the
effect of an error in the transmitted code word, as the refer-
ence vector corresponding to the corrupted index is made as
similar as possible to the reference vector represented by the
intended index.

2. METHODOLOGY

The Kohonen self-organising feature map (K-SOFM) is a
data visualisation algorithm (Kohonen [3, 4]), typically con-
sisting of a two dimensional array of neurons, each of which
computes the Euclidean distance between the input vector
and the neuron’s “weight” vector. During each cycle of the
iterative training procedure, an input pattern is chosen at
random from the training set and presented to each neuron
in turn. The neuron that responds most strongly is declared
the winner. The weights of the winning neuron are then
updated according to the following update rule:

w;(t +1) = w; () + at)[z(t) — w;(#)]-

In addition, the weights of the neurons in the spatial neigh-
bourhood of the winning neuron are also updated according
to the same rule. In this way, the network forms a topology
preserving map of the input space, where neurons in similar
positions in the map represent regions that are close together
in the input space.

The Hamming learning vector quantiser [5, 6] (Algorithm 1)
is an extension of the Kohonen self-organising feature map,
in which the neurons comprising the neighbourhood of the
winning neuron are selected according to the Hamming dis-
tance between their indices and the index of the winning
neuron. This is equivalent to a Kohonen self-organising fea-
ture map, with 2" neurons, arranged as an n-dimensional
hypercube with a neuron at each vertex. The resulting fea-
ture map is organised such that similar input vectors are
mapped onto neurons represented by indices with similar bi-
nary patterns. The weight vectors of each neuron represents
a reference vector of an ordered codebook, suitable for use
in vector quantisation for transmission over a noisy channel.



1.  Given initial code book estimate
W ={wi,ws,...,wy} CR?,
p dimensional training data
X = {:131,:132,...,:131\/1} C ?Rp,
and neighbourhood size
2. Foreachie{l,2,...,M}
3. Foreachje{1,2,...,N}
4. Calculate the output of neuron j for
training vector x;:
oj = |w;j—

= \/Zizl(wjk —Tik)?
5. Select neuron with the greatest output:
Owinner =argmax (o)
k

6. Foreachje{l,2,...,N}

7. if dHamming (Winner,j) <n
wj(t+1) = w;(t) + a(e; —w;(t))
8. if |24 Zf\io argmin (z; — w;)| <e

n=n-1
9. if n > 0 return to step 2

Algorithm 1: The Hamming learning vector quantiser.

3. RESULTS

For evaluation, codebooks of 256 reference vectors were
compiled, from data obtained from line spectral pair
(LSP) [7] analysis of speech from the DARPA/TIMIT [8]
speech corpus, using the Hamming learning vector quantiser
and a two-dimensional Kohonen self-organising feature map.
The reference vectors found using the Hamming learning
vector quantiser were also re-ordered randomly, to destroy
any correlation between reference vectors and their indices,
and also re-ordered using a random pairwise interchange
algorithm with simulated annealing [6]. The normalised
sample cross correlation of the Hamming distance between
code book indices and the Euclidean distance between the
corresponding reference vectors w;, provides a measure of
the order within the codebook.
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Table 1 shows the normalised sample cross-correlation for
each codebook. The Hamming learning vector quantiser
achieves a substantially higher correlation than the two-
dimensional Kohonen self-organising feature map, and also
higher than the codebook re-ordered using a random pair-
wise interchange algorithm with simulated annealing, even
though a very lengthy cooling schedule was employed.

Method Correlation
Random 0.027907
K-SOFM 0.303807
Simulated Annealing | 0.320980
HLVQ 0.360483

Table 1: Normalised sample cross correlation for randomly
ordered code books, and for codebooks reordered using sim-
ulated annealing, HLVQ and K-SOFM

Figure 1 shows a graph of mean error power between ref-
erence vectors against the Hamming distance of codebook
indices. The graph was created by simulating 1,2,...8 bit
errors in every possible bit position, for each reference vector
and noting the error power. It can be seen that, as expected,
the randomly ordered codebook shows very little change in
error power as the Hamming distance increases, so single bit
errors in the transmitted index lead to a similar amount of
spectral distortion as eight bit errors. Each vector quanti-
sation method, that includes an index assignment process,
substantially reduces the error power for single bit errors,
which are by far the most common type of transmission er-
ror. It can be seen that the error power for single bit errors is
lowest for the codebook generated using the Hamming learn-
ing vector quantiser.

4. ON THE UNDERLYING
DIMENSIONALITY OF THE
VECTOR SPACE

To determine the effect of the dimensionality of the data on
the correlation in conventional 2-D Kohonen self-organising
feature maps and the Hamming learning vector quantiser,
data sets were generated from randomly placed Gaussian
clusters in 1,2,3,...,10 dimensions. The Kohonen self-
organising feature map and Hamming learning vector quan-
tiser algorithms were then used to generate codebooks con-
taining 256 reference vectors for each data set. It can be
seen from Figure 2 that the highest correlation is achieved
when the dimensionality of the data space coincides with
the dimensionality of the codebook (two-dimensional for the
K-SOFM and eight-dimensional for the H-LVQ).

It would be sensible then, to employ a self-organising vec-
tor quantiser of the same dimensionality as the underlying
dimensionality of the data. Adler et al. [9] report the un-
derlying dimensionality of the speech space to be approxi-
mately four, i.e. the speech space can be viewed as the pro-
jection of a noisy four-manifold into the vector space formed



by the speech parameters. Clearly a four dimensional self-
organising feature map would be best suited to vector quan-
tisation of speech signals. The Hamming learning vector
quantiser is better suited to vector quantisation of signals
where the underlying dimension of the data is not known in
advance, or is very high, for instance in vector quantisation
image data.

5. CONCLUSIONS

A new combined vector quantisation and index assignment
algorithm is presented, the Hamming learning vector quan-
tiser, based on Kohonen’s self-organising feature map. The
algorithm is applied to the task of robust vector quantisa-
tion of speech data for transmission over a noisy transmis-
sion channel. The index assignment achieved by the new
algorithm is shown to be better than that obtained using a
random pairwise interchange algorithm with simulated an-
nealing, or using the conventional Kohonen self-organising
feature map. The Hamming self-organising feature map how-
ever, due to the high dimensionality of the codebook, is bet-
ter suited to quantisation of data with a high underlying
dimensionality, such as image data.
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Figure 1: Graph of mean error power (dB) against Ham-
ming distance, for code books generated by a conventional
K-SOFM and the Hamming learning vector quantiser, an un-
ordered code book, and a code book re-ordered using simu-
lated annealing.
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Figure 2: Graph of normalised sample cross-correlation
against the intrinsic dimensionality of the training data, for a
conventional K-SOFM and Hamming learning vector quan-
tiser.



