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Abstract

Kernel logistic regression models, like their linear coun-
terparts, can be trained using the efficient iteratively re-
weighted least-squares (IRWLS) algorithm. This approach
suggests anapproximateleave-one-out cross-validation es-
timator based on an existing method for exact leave-one-out
cross-validation of least-squares models. Results compiled
over seven benchmark datasets are presented for kernel
logistic regression with model selection procedures based
on both conventionalk-fold and approximate leave-one-out
cross-validation criteria.

1. Introduction

Kernel logistic regression provides a useful addition to
the family of kernel learning methods for pattern recogni-
tion applications where the misclassification costs are not
known a-priori, and so estimates ofa-posterioriprobabil-
ity are more useful than simple binary classifications. The
optimal values for the parameters of a kernel logistic re-
gression model are given by the solution of a convex opti-
misation problem, which can be solved efficiently via the it-
eratively re-weighted least-squares algorithm. However, in
order to achieve optimal generalisation performance, good
values for the kernel and regularisation parameters must
also be found, a process known as “model selection”. This
process is normally performed via iterative improvement of
some model selection criterion, expected to be strongly cor-
related with performance on unseen data, for instance meth-
ods based on cross-validation [15]. In this paper we pro-
pose an efficient approximation of the leave-one-out cross-
validation procedure for used as a model selection criterion
for kernel logistic regression models that can be computed
as a bye-product of the training procedure. This estimator
is shown to be comparable with conventional 10-fold cross-
validation in terms of final model performance, but at sub-
stantially reduced computational expense.

1.1. Kernel Logistic Regression

A non-linear form of logistic regression, known as kernel
logistic regression (KLR), can be obtained via the so-called
“kernel trick”, whereby a conventional logistic regression
model is constructed in a high-dimensional feature space,
induced by a Mercer kernel. More formally, given labelled
training data,

D = {(xi, ti)}`
i=1 , xi ∈ X ∈ Rd, ti ∈ [0, 1],

a feature space,F (φ : X → F), is defined by a kernel
function,K : X ×X → R, that evaluates the inner product
between the images of input vectors in the feature space, i.e.
K(x,x′) = φ(x) · φ(x′) (see e.g. [14]). The kernel func-
tion used here is the isotropic radial basis function (RBF),

K(x,x′) = exp
{
γ‖x− x′‖2

}
A conventional logistic regression model is then constructed
in the feature space, such that

logit{y(x)} = w · φ(x) + b, logit(p) = log
p

1− p
.

The optimal model parameters(w, b) are found by min-
imising a cost function representing the regularised [16]
negative-log likelihood of the data,

L = λ‖w‖2 −
∑̀
i=1

ti log µi + (1− ti) log(1− µi), (1)

whereλ is a regularisation parameter controlling the bias-
variance trade-off [6]. The representer theorem [9] states
that the solution to an optimisation problem of this nature
can be written in the form of a linear combination of the
training patterns, such thatlogit{y(x)} is given by the fa-
miliar kernel expansion,

w =
∑̀
i=1

αiφ(xi), =⇒ logit{y(x)} =
∑̀
i=1

αiK(xi,x)+b.



Furthermore, it is straight-forward to show thatL (1) repre-
sents a convex optimisation problem, and so there is only a
single, global minima. The optimal model parameters(α, b)
can be found using Newton’s method or equivalently an it-
eratively re-weighted least-squares procedure, e.g. [10].

1.2. Iteratively Re-weighted Least-Squares

Conventional logistic regression models are typically
fitted using the well-known iteratively re-weighted least
squares (IRWLS) algorithm [10]. With a slight modification
to accommodate the regularisation term, kernel logistic re-
gression models can also be trained using IRWLS. The co-
efficients of the kernel expansion in each iteration are given
by the solution of a weighted least squares problem,

α =
(
ΦT WΦ + R

)−1

ΦT Wη. (2)

The bias,b, is implemented by introducing an additional ba-
sis function with a constant value, such thatΦ = [K 1],
whereK = [kij = K(xi,xj)]

`
i,j=1. The effect of the regu-

larisation term is represented by the matrixR,

R =
[

K 0
0 0

]
,

note the bias term is not regularised. Theweightmatrix,W ,
and “target” vectorη are then updated for the subsequent
iteration, such that

W = diag({w1, w2, . . . , w`}), wi = µi(1− µi), (3)

and

ηi = zi +
ti − µi

µi(1− µi)
, (4)

wherezi = logit{y(xi)}. Steps 2-4 are repeated until con-
vergence. In practise any column ofΦ that is, at leastnu-
merically, linearly dependent on the remaining columns can
be deleted from the model. In this study, we identify a sub-
set of linearly independent columns using the incomplete
Cholesky factorisation algorithm [5].

2. Efficient Model Selection

Model selection, the process of determining the optimal
regularisation and kernel parameters, is an important issue
in fitting kernel models. In this section, we discuss effi-
cient implementation of thek-fold cross-validation proce-
dure and present a novel approximation to the leave-one-out
estimator.

2.1. Efficientk-Fold Cross-Validation

A useful feature of the iteratively re-weighted least-
squares training algorithm is that only theoutputof an exist-
ing model is required to provide a good initial values forW

andη for use in the first iteration. In implementing thek-
fold cross-validation procedure, a useful reduction in com-
putational expense can be obtained through using the out-
put of the model trained in the first fold to “seed” the train-
ing of models in subsequent folds. If cross-validation is be-
ing used as the optimisation criterion for an iterative model
selection procedure, a model trained in a previous iteration
can be used as a seed, and so only a single model needs to
be trained from the beginning. Note that unlike the “alpha-
seeding” approach used in support vector machines [4], the
seed and current models need not be trained on the same
data and may have completely different kernel functions as
only theoutputof the seed model is used.

2.2. Approximate Leave-One-Out Cross-
Validation

Efficient methods for leave-one-out cross-validation of
linear least-squares regression models have been available
for some time [1, 3, 17], and have more recently been ap-
plied to kernel learning methods minimising a regularised
sum-of-squares loss function [2]. These methods can also
be applied to kernel logistic regression models, if we as-
sume thatW andη are approximately unchanged by the
deletion of a single training pattern during each iteration of
the leave-one-out procedure. The “hat” matrix,H, for a reg-
ularised weighted least-squares regression problem is given
by

H = [hij ]
`
i,j=1 = Φ

(
ΦT WΦ + R

)−1

ΦT W . (5)

Using the Sherman-Woodbury-Morrison formula [8, 7] for
a general rank-1 update of the inverse of a matrix,

[
C + uvT

]−1
= C−1 +

C−1uvT C−1

1− vT C−1u
,

it is straight-forward to show that

{
z(i)

}
i
= zi −

hii (ηi − zµ
i )

1− hii
, (6)

where
{
z(i)

}
j

represents thejth element ofz during the

ith iteration of the leave-one-out cross-validation proce-
dure, from which the leave-one-out cross-validation esti-
mate of the cross-entropy can be obtained. For a more de-
tailed derivation, see [2].

3. Results

Figure 1 shows a graph of the time taken for model se-
lection procedures based on the minimisation of three dif-
ferent model selection criteria, using the Nelder-Mead sim-
plex algorithm [11], for a synthetically generated dataset



[2]. The approximate leave-one-out cross-validation esti-
mator (ALOO) is significantly less expensive than either
10-fold cross-validation (XVAL) or the conventional leave-
one-out estimator (LOO). Note also that the scaling proper-
ties of the approximate leave-one-out method are similar to
those of the 10-fold cross-validation estimator than those of
conventional leave-one-out cross-validation, which is gen-
erally accepted as being prohibitively expensive for all but
the smallest datasets.
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Figure 1. Time taken for model selection us-
ing three different model selection criteria.

Figure 2 shows contour plots of the test set, 10-fold
cross-validation and approximate leave-one-out estimates
of the cross-entropy loss function for the Pima benchmark
dataset [13] as a function of the hyper-parametersγ andλ.
The general form of all three plots are very similar, indicat-
ing that the proposed approximate leave-one-out procedure
provides a good estimator of test set error. While the optimal
hyper-parameters given by the 10-fold cross-validation and
approximate leave-one-out estimators are somewhat differ-
ent from those optimising the test set error, they all lie along
the bottom of a shallow trough in the test set loss and so give
similar performance.

The proposed approximate leave-one-out estimator was
then used as a criterion for model selection based on a sim-
ple Nelder-Mead simplex optimisation algorithm [11]. For
comparison, 10-fold and split-sample model selection crite-
ria were also investigated. The split-sample estimator uses
the cross-entropy measured over the test set as the selection
criterion and so provides an indication of the best achiev-
able performance on the test set. Table 1 shows the cross-
entropy measured over the test set for the three model se-
lection criteria for the Pima and Synthetic benchmarks used

Benchmark TEST XVAL ALOO

Breast Cancer 39.46 40.96 40.95
Diabetis 142.98 143.19 143.09
Heart 44.84 47.54 48.30
Pima 146.20 146.56 146.85
Synthetic 228.65 230.99 254.15
Thyroid 2.44 2.83 2.93
Titanic 1029.42 1044.87 1070.47

Table 1. Minimal test set loss according to
model selection criteria for a range of bench-
mark datasets.

Benchmark XVAL ALOO

Breast Cancer 203.14 24.34
Diabetis 1902.63 360.30
Heart 148.64 22.15
Pima 228.07 22.99
Synthetic 230.99 14.78
Thyroid 117.06 18.42
Titanic 28.43 2.07

Table 2. Model selection time by model se-
lection criteria for a range of benchmark
datasets.

by Ripley [13] and the Diabetis, Heart, Thyroid and Titanic
benchmarks used by Rätschet al.[12]. The performances of
the approximate leave-one-out and 10-fold cross-validation
criteria are generally quite similar, except for the synthetic
and titanic benchmarks, where 10-fold cross-validation is
clearly superior, although the difference is still relatively
small. Table 2 shows the corresponding model selection
time for each of these experiments, revealing that the ap-
proximate leave-one-out estimator is around an order of
magnitude faster.

4. Conclusions

In this paper, we have introduced a novel approximate
leave-one-out cross-validation procedure for kernel logistic
regression models, based on the interpretation of the train-
ing procedure as a weighted least-squares problem. This
was shown to provide a highly efficient criterion for au-
tomated model selection, achieving generalisation perfor-
mance comparable to that obtained using conventional 10-
fold cross-validation (with seeding) at a significantly lower
computational expense.
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Figure 2. Plot of (a) test set (b) 10-fold cross-
validation and (c) approximate leave-one-out
estimates of cross-entropy as a function of
the hyper-parameters γ and λ for the Pima
dataset. The arrow indicates the direction
towards the point of lowest cross-entropy
(marked by a cross).


