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Abstract 1.1. Kernel Logistic Regression

Kernel logistic regression models, like their linear coun- A non-linear form of logistic regression, known as kernel
terparts, can be trained using the efficient iteratively re- logistic regression (KLR), can be obtained via the so-called
weighted least-squares (IRWLS) algorithm. This approach “kernel trick”, whereby a conventional logistic regression
suggests aapproximatdeave-one-out cross-validation es- model is constructed in a high-dimensional feature space,
timator based on an existing method for exact leave-one-outinduced by a Mercer kernel. More formally, given labelled
cross-validation of least-squares models. Results compiledtraining data,
over seven benchmark datasets are presented for kernel ' J
logistic regression with model selection procedures based D={(mi,ti)};—y, w€cX R, €0, 1],
on both conventionat-fold and approximate leave-one-out

cross-validation criteria. a feature spacef (¢ : X — F), is defined by a kernel

function,IC : X x X — R, that evaluates the inner product
between the images of input vectors in the feature space, i.e.
K(z,z') = ¢(x) - ¢(x’) (see e.g. [14]). The kernel func-

1. Introduction tion used here is the isotropic radial basis function (RBF),

Kernel logistic regression provides a useful addition to K(z,z') = exp {v]|z — z'||*}
the family of kernel learning methods for pattern recogni-
tion applications where the misclassification costs are not
known a-priori, and so estimates @-posterioriprobabil-
ity are more useful than simple binary classifications. The
optimal values for the parameters of a kernel logistic re-
gression model are given by the solution of a convex opti- . i
misation problem, which can be solved efficiently via the it- | "€ optimal model paramete(sv, b) are found by min-
eratively re-weighted least-squares algorithm. However, in IMiSing a cost function representing the regularised [16]
order to achieve optimal generalisation performance, goodn€dative-log likelihood of the data,
values for the kernel and regularisation parameters must ¢
also be fpund, a process known. as “mo_del_ selection™. This 7, — )||w|2 — Zti log f1; + (1 — ;) log(1 — i), (1)
process is normally performed via iterative improvement of P
some model selection criterion, expected to be strongly cor-
related with performance on unseen data, for instance methWhere A is a regularisation parameter controlling the bias-
ods based on cross-validation [15]. In this paper we pro- variance trade-off [6]. The representer theorem [9] states
pose an efficient approximation of the leave-one-out cross-that the solution to an optimisation problem of this nature
validation procedure for used as a model selection criterion¢an be written in the form of a linear combination of the
for kernel logistic regression models that can be computedtraining patterns, such thadgit{y(x)} is given by the fa-
as a bye-product of the training procedure. This estimator Miliar kernel expansion,
is shown to be comparable with conventional 10-fold cross- P p

validation in terms of final model performance, but at sub- .
- . ’ w = a;¢p(x;), = logit{y(x)} = o; K(x;, x)+0.
stantially reduced computational expense. ; (i) git{y(@)} ; ( )

A conventional logistic regression model is then constructed
in the feature space, such that

logit{y(x)} = w - ¢(x) +b, logit(p) = log -



Furthermore, it is straight-forward to show tha{1) repre- andn for use in the first iteration. In implementing tle
sents a convex optimisation problem, and so there is only afold cross-validation procedure, a useful reduction in com-
single, global minima. The optimal model paramefeisb) putational expense can be obtained through using the out-
can be found using Newton’s method or equivalently an it- put of the model trained in the first fold to “seed” the train-
eratively re-weighted least-squares procedure, e.g. [10].  ing of models in subsequent folds. If cross-validation is be-
ing used as the optimisation criterion for an iterative model
1.2. Ilteratively Re-weighted Least-Squares selection procedure, a model trained in a previous iteration
can be used as a seed, and so only a single model needs to

Conventional logistic regression models are typically be trained from the beginning. Note that unlike the “alpha-
fitted using the well-known iteratively re-weighted least seeding” approach used in support vector machines [4], the
squares (IRWLS) algorithm [10]. With a slight modification seed and current models need not be trained on the same
to accommodate the regularisation term, kernel logistic re- data and may have completely different kernel functions as
gression models can also be trained using IRWLS. The co-only theoutputof the seed model is used.
efficients of the kernel expansion in each iteration are given
by the solution of a weighted least squares problem, 2.2. Approximate Leave-One-Out Cross-

_ (<I>TW<I> N R) 1 TW, @ Validation

Efficient methods for leave-one-out cross-validation of
linear least-squares regression models have been available
for some time [1, 3, 17], and have more recently been ap-
plied to kernel learning methods minimising a regularised
sum-of-squares loss function [2]. These methods can also

| K O be applied to kernel logistic regression models, if we as-
R= { 0 0 } sume thatW andn are approximately unchanged by the
deletion of a single training pattern during each iteration of
the leave-one-out procedure. The “hat” mat#i, for areg-
ularised weighted least-squares regression problem is given

The biasp, is implemented by introducing an additional ba-
sis function with a constant value, such tdat= [K 1],
whereK = [k;; = IC(:::“acJ)}Z . The effect of the regu-
larisation term is represented by the mathx

note the bias term is not regularised. Mxeightmatrix, W,
and “target” vectom are then updated for the subsequent
iteration, such that

by
W:diag({wlaw%'-'vwf})? wj :Mi(l_ui)v (3) , 1
T T
and t H=[h),_, =@ (cp W+ R) 3"W. (5)
. i — i
M= Et s (1 — )’ ) Using the Sherman-Woodbury-Morrison formula [8, 7] for

wherez; = logit{y(,)}. Steps 2-4 are repeated until con- a general rank-1 update of the inverse of a matrix,

vergence. In practise any column @fthat is, at leashu- C luvTC!
merically, linearly dependent on the remaining columns can [C + uvT] PR r—
be deleted from the model. In this study, we identify a sub- 1-viCu
set of linearly independent columns using the incomplete it is straight-forward to show that

Cholesky factorisation algorithm [5].

T =C7'+

hii (s — 2')
D P 6
2. Efficient Model Selection fohi=2 1—hy ©

) ith ;
Model selection, the process of determining the optimal where{z(z)}j represents thg™* element ofz during the

regularisation and kernel parameters, is an important issue”" iteration of the leave-one-out cross-validation proce-
in fitting kernel models. In this section, we discuss effi- dure, from which the leave-one-out cross-validation esti-
cient implementation of thé-fold cross-validation proce- ~Mate of the cross-entropy can be obtained. For a more de-
dure and present a novel approximation to the leave-one-outailed derivation, see [2].
estimator.

3. Results

2.1. Efficientk-Fold Cross-Validation
Figure 1 shows a graph of the time taken for model se-

A useful feature of the iteratively re-weighted least- lection procedures based on the minimisation of three dif-
squares training algorithm is that only tbetputof an exist- ferent model selection criteria, using the Nelder-Mead sim-
ing model is required to provide a good initial values Wt plex algorithm [11], for a synthetically generated dataset



[2]. The approximate leave-one-out cross-validation esti-
mator (ALOO) is significantly less expensive than either
10-fold cross-validation (XVAL) or the conventional leave-

Benchmark | TEST | XVAL | ALOO |

one-out estimator (LOO). Note also that the scaling proper- Breast Cancer 39.46 40.96 40.95
ties of the approximate leave-one-out method are similar to Diabetis 142.98| 143.19| 143.09
those of the 10-fold cross-validation estimator than those of Heart 44.84 47.54 48.30
conventional leave-one-out cross-validation, which is gen- Pima 146.20| 146.56| 146.85
erally accepted as being prohibitively expensive for all but Synthetic 228.65| 230.99| 254.15
the smallest datasets. Thyroid 2.44 2.83 2.93
Titanic 1029.42| 1044.87| 1070.47
10 ps Table 1. Minimal test set loss according to
- -~ XVAL P model selection criteria for a range of bench-
10° L~ ~ ALOO //” : mark datasets.
_ 107 L /
e} p
5 //
g1y e T Benchmark | XVAL | ALOO |
5 10° L _— g ] Breast Cancer | 203.14| 24.34
- T P Diabetis 1902.63| 360.30
10,15\7/:/_: BN T ] Heart 148.64| 22.15
P Pima 228.07| 22.99
ST Synthetic 230.99| 14.78
10 = e e Thyroid 117.06| 18.42
number of training patterns Titanic 28.43 2.07
Figure 1. Time taken for model selection us- Table 2. Model selection time by model se-
ing three different model selection criteria. lection criteria for a range of benchmark
datasets.

Figure 2 shows contour plots of the test set, 10-fold by Ripley [13] and the Diabetis, Heart, Thyroid and Titanic
cross-validation and approximate leave-one-out estimatefenchmarks used byéschet al.[12]. The performances of
of the cross-entropy loss function for the Pima benchmark the approximate leave-one-out and 10-fold cross-validation
dataset [13] as a function of the hyper-parameteand ). criteria are generally quite similar, except for the synthetic
The general form of all three plots are very similar, indicat- and titanic benchmarks, where 10-fold cross-validation is
ing that the proposed approximate leave-one-out procedureclearly superior, although the difference is still relatively
provides a good estimator of test set error. While the optimal small. Table 2 shows the corresponding model selection
hyper-parameters given by the 10-fold cross-validation andtime for each of these experiments, revealing that the ap-
approximate leave-one-out estimators are somewhat differproximate leave-one-out estimator is around an order of
ent from those optimising the test set error, they all lie along magnitude faster.
the bottom of a shallow trough in the test set loss and so give
similar performance. 4. Conclusions

The proposed approximate leave-one-out estimator was
then used as a criterion for model selection based on a sim- In this paper, we have introduced a novel approximate
ple Nelder-Mead simplex optimisation algorithm [11]. For leave-one-out cross-validation procedure for kernel logistic
comparison, 10-fold and split-sample model selection crite- regression models, based on the interpretation of the train-
ria were also investigated. The split-sample estimator usesng procedure as a weighted least-squares problem. This
the cross-entropy measured over the test set as the selectiomas shown to provide a highly efficient criterion for au-
criterion and so provides an indication of the best achiev- tomated model selection, achieving generalisation perfor-
able performance on the test set. Table 1 shows the crossmance comparable to that obtained using conventional 10-
entropy measured over the test set for the three model sefold cross-validation (with seeding) at a significantly lower
lection criteria for the Pima and Synthetic benchmarks usedcomputational expense.
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Figure 2. Plot of (a) test set (b) 10-fold cross-
validation and (c) approximate leave-one-out
estimates of cross-entropy as a function of
the hyper-parameters ~ and X for the Pima
dataset. The arrow indicates the direction
towards the point of lowest cross-entropy
(marked by a cross).




