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Abstract

In this study we investigate the effect of vary-
ing the ratio of false-positive and false-negative mis-
classification costs on the sensitivity and selectiv-
ity of binary predictions of exceedences of atmo-
spheric pollutants. This allows us to determine a
window of values for this ratio for which it is worth-
while making definite rather than probabilistic pre-
dictions. The support vector machine provides a
suitable statistical pattern recognition method for
this work.

1 Introduction

It is rarely the case in real world classifica-
tion tasks that the penalties associated with false-
negative and false-positive misclassifications are ex-
actly equal, although this is frequently an implicit
assumption of practical statistical pattern recogni-
tion algorithms. For instance in diagnosis of a med-
ical disorder a false-positive result is likely to be
cause for some concern for the patient and may in-
cur financial costs due to the conduct of further un-
necessary tests, however a false-negative result may
lead to a potentially serious disorder developing un-
detected, with far more severe consequences. Like-
wise misclassifications in the prediction of episodes
of poor air quality also incur asymmetric social,
healthcare and financial penalties. These costs are
complex, difficult to adequately quantify and vary
for different end users. As the prior probability of
an exceedence of a given pollutant is relatively low,
for a prediction of poor air quality to be possible, ei-
ther there must be little overlap in the distributions
of patterns representing good and poor air quality,
or the penalty associated with false-negative mis-
classifications must be sufficiently higher than that
associated with false-positive errors. In this work,
we aim to estimate the range of values the ratio of
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misclassification costs can take for which worthwhile
predictions of poor air quality can still be made.

2 Support Vector Classification

The support vector machine [1,2], given labelled
training data
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generates a maximal margin linear decision rule of
the form h(x) = sign(w - & — b). The weight vector,
w, is given by the solution of the primal optimisa-
tion problem: minimise
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The slack parameters, ¢;, allow training patterns to
be misclassified in the case of linearly non-separable
problems. The parameter C sets the penalty ap-
plied to margin-errors, and therefore can be viewed
as a regularisation parameter, controlling the trade-
off between the width of the margin and training set
error. A non-linear decision rule can be constructed
using a maximal margin linear classifier in a high
dimensional feature space, ®(x), defined by a posi-
tive definite kernel function, k(x, '), specifying an
inner product in the feature space,

b(z)  ®(x') = k(z,x').

A common kernel is the Gaussian radial basis func-
tion (RBF),

k(z,z') = e MNE-Z'I*,



The function implemented by a support vector ma-
chine is given by
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To find the optimal coefficients, «, of this expansion
it is sufficient to maximise the functional,
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in the non-negative quadrant,
0<q; <C, i=1,...,¢, (6)

subject to the constraint,
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The Karush-Kuhn-Tucker (KKT) conditions can be
stated as follows:

a; =0 = yif(x) >1, (8)
0<a;<C = yif(x;) =1, 9)
a;=C = yif(x;) <1 (10)

These conditions are satisfied for the set of feasible
Lagrange multipliers, a® = {a?,a3,...,aY}, max-
imising the objective function given by equation 5.
The bias parameter, b, is selected to ensure that the
second KKT condition is satisfied for all input pat-
terns corresponding to non-bound Lagrange multi-
pliers. Note that in general only a limited number
of Lagrange multipliers, a®, will have non-zero val-
ues; the corresponding input patterns are known as
support vectors. Equation 4 can then be written as
an expansion over support vectors,
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support vectors
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For a full exposition of the support vector method,
see Vapnik [3].

3 Support Vector Machines and Asymmetric
Misclassification Costs

In the case of binary classification, for any risk
functional that is a linear combination of penalties
for each observation, the imposition of asymmet-
ric false-positive and false-negative misclassification

costs is equivalent to an unequal replication of pos-
itive and negative training examples. Consider a
generalised empirical risk functional,

| =

* —
REmp -

¢
Zcia(yi;f(xiaa))a (12)

where C; is the cost associated with the error for
pattern ¢. For binary pattern recognition, where

vi, f € {—1,+1}, typically

o simay = { 8 VS Ime)

To implement asymmetric misclassification costs for
positive and negative examples,

. ct y; = +1
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where C'T is the cost associated with false-negative
and C~ the cost associated with false-positive mis-
classifications. Clearly the generalised risk func-
tional given by equation 12 is equivalent to the stan-
dard empirical risk,
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evaluated over a second dataset consisting of CF
replicates of each positive training example and C'~
replicates of each negative example.

For the support vector machine, the symmetry
of the optimisation problem given by equations 5-7
suggests that identical training patterns can safely
be assigned identical Lagrange multipliers. A no-
tional resampling of training patterns is then imple-
mented by the solution of a modified optimisation
problem, maximise
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where (; is the replication factor for pattern i. A
change of variables, such that a; = (;a, reveals that



the solution of the modified optimisation problem is
identical to that of the original problem subject to
the modified box constraint,

OSQ,SQC, izl,...,f.

Unequal misclassification costs can therefore be ac-
commodated using the modified box constraint,

0<a; <CTC y; = +1
0<a; <CC yi = —1

(cf. Lin et al. [4], Veropoulos et al. [5]).

4 Method

For the majority of air quality time series, ex-
ceedences of a given pollutant are likely to be rela-
tively rare. As a result it may be the case that it
is only worthwhile predicting exceedences if the cost
of false-negative predictions outweighs that of false
positives. In order to investigate the effect of asym-
metric misclassification costs on prediction of ex-
ceedences, radial basis function support vector ma-
chines can be trained using a range of misclassifica-
tion costs, in this case for the task of predicting SO,
exceedences in Belfast. The input vector for the sup-
port vector network consists of variables represent-
ing todays mean SO2 concentration, sin and cosine
components representing the day of the week and
the Julian day and also meteorological variables rep-
resenting tomorrows’ weather, namely mean tem-
perature, sea level pressure, wind speed and wind
direction. The network is trained to predict the ex-
istence of an exceedence twenty-four hours in ad-
vance. The support vector machines were trained
using a freely available MATLAB toolbox [6]. The
value of the overall regularisation parameter, C', and
kernel parameter, v, are chosen in accordance with
the model selection procedure [7], which attempts to
minimise an upper bound on the leave-one-out cross-
validation error [8]. The £a bound on the leave-one-
out error of a support vector machine is given by,
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where p equals 2, and R% is an upper bound on
k(x, ) — k(x, «'), Ve,x'. The inequality
pa? R4 +¢&; > 1 holds for any training pattern corre-
sponding to an error in the leave-one-out procedure,
equation 13 therefore provides an upper bound on
the leave-one-out error that can be efficiently com-
puted from the solution of the primal and dual op-
timisation problems (equations 1-3 and 5-7). For
support vector machines with a Gaussian radial ba-
sis kernel, R = 1.

(pa?RA +&) > 1}, (13)

The performance of classifiers will be reported in
terms of three statistics,

e
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where ny and n_ represent the number of posi-
tive and negative examples respectively, and e} and
e_ represent the number of false-negative and false-
positive leave-one-out errors respectively,

er = Wiiyi=+1A(poiRA +&) > 1},
e = Hiiyi=—1A(paiRX +&) > 1},
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5 Results

Figure 1 shows a graph of recall against the ratio
of misclassification costs, over the training set, using
the £a bound on the leave-one-out cross-validation
error and the true leave-one-out error. It can be
seen that for symmetric misclassification costs, it
is only marginally worthwhile to make any positive
classifications. For a ratio of costs of just over 6:1
or more, all exceedences are reliably predicted.
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Fig. 1. Graph of recall against ratio of misclassification
costs.

Figure 2 shows a graph of precision against the ra-
tio of misclassification costs. Naturally the number
of false positive errors increases with an increasing
ratio of misclassification costs. If a ratio of more
than approximately 6:1 is used, all patterns are pre-
dicted as exceedences.
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Fig. 2. Graph of precision against ratio of misclassifi-
cation costs.

Figure 3 shows a graph of accuracy against the
ratio of misclassification costs. Note the large dis-
continuities at either extreme of the graph. It ap-
pears that the model selection criterion used favours
the simplest possible classifier, with a constant out-
put, rather too strongly for marginally worthwhile
predictions. Better classifiers for the extremes may
result from a different model selection criterion.
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Fig. 3. Graph of accuracy against ratio of misclassifi-
cation costs.

6 Summary

In this paper we have demonstrated that the per-
formance of a classifier strongly depends on the costs
associated with false-positive and false-negative mis-
classification errors. We have also experimentally
determined the range of misclassification costs for
which it is worthwhile actively making predictions

of poor air quality due to SO- in Belfast.
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