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Abstract

In this study we investigate the e�ect of vary-
ing the ratio of false-positive and false-negative mis-
classi�cation costs on the sensitivity and selectiv-
ity of binary predictions of exceedences of atmo-
spheric pollutants. This allows us to determine a
window of values for this ratio for which it is worth-
while making de�nite rather than probabilistic pre-
dictions. The support vector machine provides a
suitable statistical pattern recognition method for
this work.

1 Introduction

It is rarely the case in real world classi�ca-
tion tasks that the penalties associated with false-
negative and false-positive misclassi�cations are ex-
actly equal, although this is frequently an implicit
assumption of practical statistical pattern recogni-
tion algorithms. For instance in diagnosis of a med-
ical disorder a false-positive result is likely to be
cause for some concern for the patient and may in-
cur �nancial costs due to the conduct of further un-
necessary tests, however a false-negative result may
lead to a potentially serious disorder developing un-
detected, with far more severe consequences. Like-
wise misclassi�cations in the prediction of episodes
of poor air quality also incur asymmetric social,
healthcare and �nancial penalties. These costs are
complex, diÆcult to adequately quantify and vary
for di�erent end users. As the prior probability of
an exceedence of a given pollutant is relatively low,
for a prediction of poor air quality to be possible, ei-
ther there must be little overlap in the distributions
of patterns representing good and poor air quality,
or the penalty associated with false-negative mis-
classi�cations must be suÆciently higher than that
associated with false-positive errors. In this work,
we aim to estimate the range of values the ratio of
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misclassi�cation costs can take for which worthwhile
predictions of poor air quality can still be made.

2 Support Vector Classi�cation

The support vector machine [1, 2], given labelled
training data

f(xi; yi)g
`

i=1 ; xi 2X � R
d
; yi 2 f�1;+1g;

generates a maximal margin linear decision rule of
the form h(x) = sign(w �x� b). The weight vector,
w, is given by the solution of the primal optimisa-
tion problem: minimise

V (w; �) = w �w + C

X̀
i=1

�i (1)

subject to

yi[w � xi � b] � 1� �i; i = 1; 2; : : : ; `; (2)

and

�i � 0; i = 1; 2; : : : ; `: (3)

The slack parameters, �i, allow training patterns to
be misclassi�ed in the case of linearly non-separable
problems. The parameter C sets the penalty ap-
plied to margin-errors, and therefore can be viewed
as a regularisation parameter, controlling the trade-
o� between the width of the margin and training set
error. A non-linear decision rule can be constructed
using a maximal margin linear classi�er in a high
dimensional feature space, �(x), de�ned by a posi-
tive de�nite kernel function, k(x;x0), specifying an
inner product in the feature space,

�(x) ��(x0) = k(x;x0):

A common kernel is the Gaussian radial basis func-
tion (RBF),

k(x;x0) = e

�
jjx�x0
jj
2

:



The function implemented by a support vector ma-
chine is given by

f(x) =

(X̀
i=1

�iyik(xi;x)

)
� b: (4)

To �nd the optimal coeÆcients, �, of this expansion
it is suÆcient to maximise the functional,

W (�) =
X̀
i=1

�i �
1

2

X̀
i;j=1

yiyj�i�jk(xi;xj); (5)

in the non-negative quadrant,

0 � �i � C; i = 1; : : : ; `; (6)

subject to the constraint,

X̀
i=1

�iyi = 0: (7)

The Karush-Kuhn-Tucker (KKT) conditions can be
stated as follows:

�i = 0 ) yif(xi) � 1; (8)

0 < �i < C ) yif(xi) = 1; (9)

�i = C ) yif(xi) � 1: (10)

These conditions are satis�ed for the set of feasible
Lagrange multipliers, �0 = f�0

1
; �

0

2
; : : : ; �

0

`g, max-
imising the objective function given by equation 5.
The bias parameter, b, is selected to ensure that the
second KKT condition is satis�ed for all input pat-
terns corresponding to non-bound Lagrange multi-
pliers. Note that in general only a limited number
of Lagrange multipliers, �0, will have non-zero val-
ues; the corresponding input patterns are known as
support vectors. Equation 4 can then be written as
an expansion over support vectors,

f(x) =

( X
support vectors

�

0

i yik(xi;x)

)
� b: (11)

For a full exposition of the support vector method,
see Vapnik [3].

3 Support Vector Machines and Asymmetric

Misclassi�cation Costs

In the case of binary classi�cation, for any risk
functional that is a linear combination of penalties
for each observation, the imposition of asymmet-
ric false-positive and false-negative misclassi�cation

costs is equivalent to an unequal replication of pos-
itive and negative training examples. Consider a
generalised empirical risk functional,

R

�

Emp
=

1

`

X̀
i=1

Ci�(yi; f(xi;�)); (12)

where Ci is the cost associated with the error for
pattern i. For binary pattern recognition, where
yi; f 2 f�1;+1g, typically

�(y; f(x;�)) =

�
0 y = f(x;�)
1 y 6= f(x;�)

:

To implement asymmetric misclassi�cation costs for
positive and negative examples,

Ci =

�
C
+

yi = +1
C

�
yi = �1

;

where C+ is the cost associated with false-negative
and C

� the cost associated with false-positive mis-
classi�cations. Clearly the generalised risk func-
tional given by equation 12 is equivalent to the stan-
dard empirical risk,

REmp =
1

`
0

`0X
i=1

�(yi; f(xi;�));

evaluated over a second dataset consisting of C+

replicates of each positive training example and C
�

replicates of each negative example.
For the support vector machine, the symmetry

of the optimisation problem given by equations 5-7
suggests that identical training patterns can safely
be assigned identical Lagrange multipliers. A no-
tional resampling of training patterns is then imple-
mented by the solution of a modi�ed optimisation
problem, maximise

W (��) =
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in the non-negative quadrant,

0 � �

�
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subject to the constraint,

X̀
i=1

yi�i�
�

i = 0;

where �i is the replication factor for pattern i. A
change of variables, such that �i = �i�

�
i , reveals that



the solution of the modi�ed optimisation problem is
identical to that of the original problem subject to
the modi�ed box constraint,

0 � �i � �iC; i = 1; : : : ; `:

Unequal misclassi�cation costs can therefore be ac-
commodated using the modi�ed box constraint,�

0 � �i � C
+
C yi = +1

0 � �i � C
�
C yi = �1

(c.f. Lin et al. [4], Veropoulos et al. [5]).

4 Method

For the majority of air quality time series, ex-
ceedences of a given pollutant are likely to be rela-
tively rare. As a result it may be the case that it
is only worthwhile predicting exceedences if the cost
of false-negative predictions outweighs that of false
positives. In order to investigate the e�ect of asym-
metric misclassi�cation costs on prediction of ex-
ceedences, radial basis function support vector ma-
chines can be trained using a range of misclassi�ca-
tion costs, in this case for the task of predicting SO2

exceedences in Belfast. The input vector for the sup-
port vector network consists of variables represent-
ing todays mean SO2 concentration, sin and cosine
components representing the day of the week and
the Julian day and also meteorological variables rep-
resenting tomorrows' weather, namely mean tem-
perature, sea level pressure, wind speed and wind
direction. The network is trained to predict the ex-
istence of an exceedence twenty-four hours in ad-
vance. The support vector machines were trained
using a freely available MATLAB toolbox [6]. The
value of the overall regularisation parameter, C, and
kernel parameter, 
, are chosen in accordance with
the model selection procedure [7], which attempts to
minimise an upper bound on the leave-one-out cross-
validation error [8]. The �� bound on the leave-one-
out error of a support vector machine is given by,

Err`�� =
d

`

; d = jfi : (��0iR
2

�
+ �i) � 1gj; (13)

where � equals 2, and R
2

�
is an upper bound on

k(x; x) � k(x; x0); 8x;x0. The inequality
��

0

iR
2

�
+�i � 1 holds for any training pattern corre-

sponding to an error in the leave-one-out procedure,
equation 13 therefore provides an upper bound on
the leave-one-out error that can be eÆciently com-
puted from the solution of the primal and dual op-
timisation problems (equations 1-3 and 5-7). For
support vector machines with a Gaussian radial ba-
sis kernel, R2

�
= 1.

The performance of classi�ers will be reported in
terms of three statistics,

recall = 1�
e+

n+

;

precision =
n+ � e+

n+ � e+ + e�

;

accuracy = 1�
e+ + e�

n+ + n�

;

where n+ and n� represent the number of posi-
tive and negative examples respectively, and e+ and
e� represent the number of false-negative and false-
positive leave-one-out errors respectively,

e+ = jfi : yi = +1 ^ (��iR
2

�
+ �i) � 1gj;

e� = jfi : yi = �1 ^ (��iR
2

�
+ �i) � 1gj;

n+ = jfi : yi = +1gj;

n� = jfi : yi = �1gj:

5 Results

Figure 1 shows a graph of recall against the ratio
of misclassi�cation costs, over the training set, using
the �� bound on the leave-one-out cross-validation
error and the true leave-one-out error. It can be
seen that for symmetric misclassi�cation costs, it
is only marginally worthwhile to make any positive
classi�cations. For a ratio of costs of just over 6:1
or more, all exceedences are reliably predicted.
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Fig. 1. Graph of recall against ratio of misclassi�cation

costs.

Figure 2 shows a graph of precision against the ra-
tio of misclassi�cation costs. Naturally the number
of false positive errors increases with an increasing
ratio of misclassi�cation costs. If a ratio of more
than approximately 6:1 is used, all patterns are pre-
dicted as exceedences.
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Fig. 2. Graph of precision against ratio of misclassi�-

cation costs.

Figure 3 shows a graph of accuracy against the
ratio of misclassi�cation costs. Note the large dis-
continuities at either extreme of the graph. It ap-
pears that the model selection criterion used favours
the simplest possible classi�er, with a constant out-
put, rather too strongly for marginally worthwhile
predictions. Better classi�ers for the extremes may
result from a di�erent model selection criterion.
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Fig. 3. Graph of accuracy against ratio of misclassi�-

cation costs.

6 Summary

In this paper we have demonstrated that the per-
formance of a classi�er strongly depends on the costs
associated with false-positive and false-negative mis-
classi�cation errors. We have also experimentally
determined the range of misclassi�cation costs for
which it is worthwhile actively making predictions

of poor air quality due to SO2 in Belfast.
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