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Abstract

Three methods — DVS plots, attractor reconstruc-
tion, and variance analysis of delay vectors — for de-
tecting nonlinearities in time series are compared on
an air pollution dataset. For rigour each method is
also used on a surrogate dataset, based on a high-
order linear fit to the original data. Finally, a com-
parison of a standard linear analysis to a neural net-
work model analysis of the air pollution dataset is
provided.

1 Introduction

Air pollutants such as surface Ozone (Os), Ni-
trogen Oxides (NOx), Sulphur Dioxide (SO2) and
Particulates have significant health effects associ-
ated with them at high concentrations. A rigor-
ous analysis of pollutant data requires consideration
of a number of meteorological variables (e.g. wind
speed) and non-meteorological variables (e.g. traf-
fic density). To obtain an insight into the underly-
ing structure, however, it is worthwhile to look ini-
tially at each pollutant time series individually with
the standard linear methods, and to do nonlinear-
ity analysis only if it appears that a linear model is
inadequate. A NO, time series of hourly measure-
ments taken over a four-year period from the Leeds
meteo station is used throughout this paper.

2 Linear Analysis of Time Series

A standard model of linear time series, the
ARIMA (p, d, q) model popularised by Box and Jenk-
ins [1], assumes that the time series z(j) is gen-
erated by a succession of “random shocks” e(j),
drawn from a distribution with zero mean and vari-
ance o2. If z(j) is non-stationary, then successive
differencing of z(j) via the differencing operator,
Vx(j) = z(j) — x(j — 1) can provide a stationary
process. A stationary process z(j) = V?z(j) can be
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modelled as an autoregressive moving average
p q
2(7) =Y aiz(j i)+ Y bie(j — i) +e(j) (1)
i=1 i=1

Of particular interest are pure autoregressive (AR)
models, which have an easily understood relation-
ship to the nonlinearity detection technique of DVS
(Deterministic Versus Stochastic) plots. The order
of the AR model can be chosen by the point where
the autocorrelation function (ACF) essentially van-
ishes for all subsequent lags, other methods, such
as AIC or BIC, can also be used. Figure 1 shows
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Fig. 1. ACF plot of NO; series.
the autocorrelation function for 40 lags for the NO,
dataset; the ACF does not vanish and a high-order
AR model is necessary.

3 The Method of Surrogate Data

Following the approach from [2], to gauge efficacy
of the techniques for detecting nonlinearity, a surro-
gate dataset is simulated from a high order autore-
gressive model fit to the original series. The coeffi-
cients a; from an AR(45) model were used to gen-
erate the surrogate series, with surrogate residuals



€(7) taken as a random permutation of the residu-
als from the original series. Evidence of nonlinear-
ity from any method of detection is negated if the
method gives a similar result when applied to the
surrogate series, which is known to be linear [2].

4 Attractor Reconstruction

Existence and/or discovery of an attractor in
phase space demonstrates whether the system is de-
terministic, purely stochastic, or somewhere in be-
tween. To reconstruct the attractor examine plots
in m-dimensional space of [z(j),z(j — 7),...,z(j —
(m — 1)7)]T. Tt is critically important for the di-
mension of the space, m, in which the attractor is
to viewed, to be large enough to “untangle” the at-
tractor. This is known as the embedding dimension.
The value of 7, the lag time or lag spacing, is also
important, particularly with noise present. The first
inflection point on the autocorrelation function is a
possible starting value for 7 [3]. Alternatively, if the
series is known to be sampled coarsely, the value of
7 can be taken as unity [4].
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Fig. 2. NO, time series embedded into 2-dimensional
phase-space with delay time 7 = 22.

Figure 2 shows the two-dimensional attractor re-
construction for the NO» time series after it has been
passed through a linear filter to remove some of the
noise present. Although the graph shows some reg-
ularity, if an attractor exists it is in a higher dimen-
sional space.

5 DVS Plots

DVS plots [4] display the (robust) prediction er-
ror E(k) for local linear models against the number
of nearest neighbours, k, used to fit the model, for a
range of embedding dimensions m. The last 500 val-

ues of the series are set aside for prediction purposes,
these values are known as the test set. For each ele-
ment in the test set z(j), construct the delay vector
x(j) = [£(j),a(j = 7);---,a(j — (m — 1)7)]’. The
k nearest neighbours are defined to be the k vectors
x(j') from the series which have the shortest Eu-
clidean distance to x(j), these k nearest neighbours
are used to fit the local linear model.

If the optimal k, taken to be the value of k giving
the lowest prediction error E(k), is at or close to
the maximum possible k, then globally linear mod-
els perform best and there is no indication of non-
linearity. In this case the model is equivalent to an
AR model of order m when 7 = 1. Small optimal &
suggests local linear models perform best, indicating
nonlinearity and/or chaotic behaviour.

m=10
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Fig. 3. DVS plot for the NO; time series with lead time
T =1 and lag delay 7 = 22.

In Figure 3 the DVS plot for m = {2,4,6,8,10}
is shown. For each value of m, the optimal k is
less than the maximum, but the difference in the
prediction error is minimal.

Figure 4 displays the equivalent DVS plot for a
surrogate dataset simulated from the AR(45) model
fit to the series. The behaviour for the surrogate
data is similar to the original data, suggesting that
the underlying structure of the series has only a
small nonlinear component.

6 Variance Analysis of Delay Vectors

Closely related to DVS plots is the nonlinearity
technique introduced in [5]. For each observation
z(i),i > m + 1 construct the group, Q;, of nearest
neighbours by

QZ:{X(j) j?él & dzJ §o¢Az}
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Fig. 4. DVS plot for the simulated NO, time series
with lead time 7' =1 and lag delay 7 = 22.

where x(j) = {z(j—1),2(j = 2),...,2(j = (m—-1))},
dij = ||x(j) — x(4)]| is the Euclidean norm, 0 < a <
N

1L, A, = % Z |z(7)| and N is the length of the
i=m+1

time series. If the series is linear, then the similar

patterns x(j) belonging to a group 2; will map onto

similar x(j)s. For nonlinear series, the patterns x(j)

will not map onto similar z(j)s. This is measured

by the variance o2 of each group €;

7t = T L) = )

The measure of nonlinearity is taken to be the mean
of g7 over all the ;, denoted 0%, normalised by
dividing through by o3, the variance of the entire

x(j) € ;.

— 2 —
time series o2 = Z—g’ The larger the value of o2 the

greater the sugges‘zion of nonlinearity [5].

The results are shown in Figure 5. Apart from a
few exceptions for o < 0.5, the normalised variance
of similar delay vectors for the simulated series is
much lower than for the real series, an indication
that the series is nonlinear.

7 Neural Adaptive Filters in the Air Pollu-
tion Time Series Prediction

As stated above prediction of air pollution time
series is a difficult task due to the complex and
cyclic nature of the underlying process that gener-
ates atmospheric pollutants. In addition, some re-
sults, i.e. DVS plots and attractor reconstruction,
indicate inherent nonlinearity of the air pollution
time series. Thus, in order to obtain good prediction
of the future value of the time series, based on the
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Fig. 5. Normalised variance plot. The lines with points
correspond to the actual NO; series; the lines
without points to the simulated linear series.

past measurements, an efficient algorithm should be
employed, an algorithm that is inherently nonlinear
and/or adaptive. Gradient-descent (GD) based neu-
ral adaptive filters, due to inherent simplicity and
nonlinearity, are adequate choices for the prediction
of time series that represents atmospheric pollution
data. Furthermore, the structure of neural adaptive
filters could be chosen to reflect the nature of the
underlying process, i.e. it could be feedforward or
recurrent.

The adaptation of a GD based neural adaptive
filter can be described by the following set of equa-
tions

v(k) = wT(ku(k) (2)
e(k) = d(k)—(v(k)) (3)

w(k+1) = w(k)—nVwE(e(k) (4

where d(k) is some training (desired) signal, e(k) is
the instantaneous error at the output neuron, E(-)
is the filter cost function, 1 denotes the learning rate
parameter, w(k) = [wy (k), ..., wn(k)]? is the weight
vector, and ®(-) represents a nonlinear activation
function of a neuron. Definition of the vector u(k)
depends on the structure of a neural adaptive filter.
In the case of the feedforward filter u(k) contains
only samples of the input signal z(k), and it is de-
fined as u(k) = [z(k — 1),...,z(k — N)]¥. The most
common choice for the cost function E(-) is
L

E(e(k)) = 5e (k). ()
Computation of the gradient of the cost function,
denoted by VwE(e(k)), depends on the structure of



a neural adaptive filter. For the feedforward type of
a filter, this gradient is given by

VwE(e(k)) = e(k)[z(k — 1), ... z(k = N)]L.  (6)

The algorithm described by equations (3) — (6) is
usually referred to as the nonlinear gradient-descent
(NGD) algorithm. The gradient of the cost function
for a nonlinear ARMA (p, ¢) recurrent perceptron is
defined as

VwE(e(k)) = e(k)II(k) (7)
where TI(k) = [3%!1(83) ey B?U%v(lzl)c)] represents the

gradient at the output of the neuron. The normal-
ized nonlinear gradient-descent (NNGD) algorithm
exhibits optimal behaviour in the sense that it mini-
mizes instantaneous prediction error, thus providing
an adaptive learning rate n [6]. In the case of the
linear activation function of an output neuron, the
NNGD algorithm reduces to the normalized least
mean squares (NLMS) algorithm.

8 Experimental Results

Air pollution data represent hourly measurements

of the concentration of nitrogen dioxide (NO,), in
the period 1994 — 1997, provided by the Leeds me-
teo station. In the performed experiments the logis-
tic function was chosen as the nonlinear activation
function of an output neuron. The logistic function
performs contraction mapping for the slope 3 set to
be 0 < g < 4 [7]. The quantitative performance
measure was the standard prediction gain, a loga-
rithmic ratio between the expected signal and error
variances R, = 10log(62/62). The slope of the non-
linear activation function of the neuron 3 was set to
be 8 = 4, since this value makes ® close to the linear
function in the vicinity of the origin. The learning
rate parameter 9 in the NGD algorithm, was set to
be n = 0.3, and the constant C' in the NNGD al-
gorithm, was set to be C' = 0.1. The order of the
feedforward filter N was set to be N = 10 [8]. The
order of the MA part ¢ and the AR part p, of the
nonlinear ARMA recurrent perceptron, were set to
be ¢ = 3 and p = 1. Due to saturation type of logis-
tic nonlinearity, input data was prescaled to fit the
range of an output neuron activation function. The
summary of the performed experiments is given in
Table 1.
It is obvious that nonlinear algorithms for adapta-
tion of a neural adaptive filter have better perfor-
mance comparing to the best linear adaptive algo-
rithm (NLMS).

NGD | NNGD | Rec.Perc. | NLMS

Pred.
gain [dB] | 5.78 5.81 6.04 4.75

Table 1. Performance of the algorithms employed in
the prediction of the NO2 time series

9 Conclusions

An insight into the dynamical properties of an
air pollutant dataset has been provided. Nonlinear
adaptive algorithms have been compared with the
linear algorithms on the air pollution series and have
provided better results. The time series is nonlinear
and cyclic and therefore the recurrent perceptron
has exhibited the best performance, corroborating
the results given by the measures of nonlinearity.
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