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Abstract

The generalisation properties of a support vec-
tor classi�cation network are typically governed by
a regularisation parameter, C, and a small number
of parameters specifying the kernel function. The
process by which the optimal values of these param-
eters are obtained is known as model selection. This
paper describes an automated model selection pro-
cedure based on minimisation of an upper bound on
the leave-one-out cross-validation error, via a simple
tabu search strategy with adaptive step size adjust-
ment.

1 Introduction

Support vector machines have demonstrated im-
pressive performance in a wide range of notable real
world classi�cation problems. The major param-
eters of the support vector classi�cation network
are given by the solution of a linearly constrained
quadratic optimisation problem, for which eÆcient
algorithms are available (e.g. Platt [1]). However
the optimal choice of kernel function and the values
of a small number of hyper-parameters, consisting of
the kernel parameters and the regularisation param-
eter C, must also be determined. This task, known

as model selection, is most often performed by train-
ing a number of classi�ers with di�erent permuta-
tions from a range of kernel functions and hyper-
parameters, and retaining the con�guration result-
ing in optimal performance on an independent set of
validation patterns. In this paper we present a sim-
ple and eÆcient tabu search method, with a robust
adaptive step size adjustment heuristic, that can be
used to �nd the value of these hyper-parameters, via
minimisation of a recent upper bound on the leave-
one-out cross-validation error rate. Model selection
is then fully automated and allows all of the avail-
able data to be used during training.
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The remainder of this paper is structured as fol-
lows: Section 2 briey describes the support vec-
tor classi�er and introduces the notation used. Sec-
tion 3 describes a suitable model selection criteria
based on a recent upper bound on the leave-one-
out cross-validation error. Section 4 details a model
selection procedure, based on Tabu search for the
minimiser of this criteria. Initial results obtained on
a small, but real-world classi�cation task are pre-
sented in section 5, and the work summarised in
section 6.

2 Support Vector Classi�cation

The support vector machine [2, 3], given labelled
training data

f(xi; yi)g
`

i=1 ; xi 2X � R
d ; yi 2 f�1;+1g;

generates a maximal margin linear decision rule of
the form h(x) = sign(w �x� b). The weight vector,
w, is given by the solution of the primal optimisa-
tion problem: minimise

V (w; �) = w �w + C
X̀
i=1

�i (1)

subject to

yi[w � xi � b] � 1� �i; i = 1; 2; : : : ; `; (2)

and
�i � 0; i = 1; 2; : : : ; `: (3)

The slack parameters, �i, allow training patterns to
be misclassi�ed in the case of linearly non-separable
problems. The parameter C sets the penalty ap-
plied to margin-errors, and therefore can be viewed
as a regularisation parameter, controlling the trade-
o� between the width of the margin and training set
error. A non-linear decision rule can be constructed
using a maximal margin linear classi�er in a high
dimensional feature space, �(x), de�ned by a posi-
tive de�nite kernel function, k(x;x0), specifying an
inner product in the feature space,

�(x) ��(x0) = k(x;x0):



A common kernel is the Gaussian radial basis func-
tion (RBF),

k(x;x0) = e�jjx�x0
jj
2

:

The function implemented by a support vector ma-
chine is given by

f(x) =

(X̀
i=1

�iyik(xi;x)

)
� b: (4)

The optimal coeÆcients, �, of this expansion are
given by the solution of the Wolfe dual of the primal
optimisation problem: maximise

W (�) =
X̀
i=1

�i �
1

2

X̀
i;j=1

yiyj�i�jk(xi;xj); (5)

in the non-negative quadrant,

0 � �i � C; i = 1; 2; : : : ; `; (6)

subject to the constraint,

X̀
i=1

�iyi = 0: (7)

The Karush-Kuhn-Tucker (KKT) conditions can be
stated as follows:

�i = 0 ) yif(xi) � 1; (8)

0 < �i < C ) yif(xi) = 1; (9)

�i = C ) yif(xi) � 1: (10)

These conditions are satis�ed for the set of feasible
Lagrange multipliers, �0 = f�0

1
; �0

2
; : : : ; �0`g, max-

imising the objective function given by equation 5.
The bias parameter, b, is selected to ensure that the
second KKT condition is satis�ed for all input pat-
terns corresponding to non-bound Lagrange multi-
pliers. Note that in general only a limited number
of Lagrange multipliers, �, will have non-zero val-
ues; the corresponding input patterns are known as
support vectors. Let I be the set of indices corre-
sponding to non-bound Lagrange multipliers,

I = fi : 0 < �0i < Cg;

and similarly J be the set of indices corresponding
to Lagrange multipliers at the upper bound C,

J = fi : �0i = Cg:

Equation 4 can then be written as an expansion over
support vectors,

f(x) =

8<
:
X

i2fI;Jg

�0i yik(xi;x)

9=
;� b: (11)

For a full exposition of the support vector method,
see the excellent books by Vapnik [4] or Cristianini
and Shawe-Taylor [5].

3 Model Selection Criteria

Model selection is performed for most classi�ers
on the basis of validation set error. An alterna-
tive approach is possible in the case of support vec-
tor classi�ers as theoretical bounds on generalisation
performance are available. In this paper we adopt
the latter approach. Joachims [6] demonstrates that
the leave-one-out cross-validation error of a stable
soft-margin support vector classi�er is bounded by,

Err`�� =
d

`
; d = jfi : (��0iR

2

�
+ �i) � 1gj; (12)

where � equals 2, and R2

�
is an upper bound on

k(x; x) � k(x; x
0); 8x;x0. The inequality

��0iR
2

�
+�i � 1 holds for any training pattern corre-

sponding to an error in the leave-one-out procedure,
equation 12 therefore provides an upper bound on
the leave-one-out error that can be eÆciently com-
puted from the solution of the primal and dual op-
timisation problems given by equations 1-3 and 5-7
respectively. Unlike other bounds on the generalisa-
tion ability of support vector classi�ers, this bound
is directly applicable to soft-margin support vector
machines incorporating a bias parameter.
The upper bound on the leave-one-out cross-

validation error (12) is discrete, and therefore is less
than ideal for model selection based on most heuris-
tic search methods, as a small change in the hyper-
parameters in general will not produce a change in
the value of the bound. Instead we minimise the
following continuous model selection criteria:

E =
X
i2I;J

ei;

where
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(
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2

�
+ �i � 1; ��0iR

2

�
+ �i � 1
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2

�
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:

This criteria also penalises patterns that may cor-
respond to leave-one-out errors, but the penalty is
linear in the deviation from the boundary between
de�nite correctness and possible error in the leave-
one-out cross-validation procedure.

4 Model Selection via Tabu Search

The tabu search procedure (e.g. Glover and La-
guna [7]) used to minimise the cost function de-
scribed in the previous section is based on a sim-
ple iterative local search heuristic. At each step



the cost function is evaluated at the set of points
given by positive and negative perturbations of each
parameter around the current solution. The point
minimising the cost function then forms the start-

ing point for the subsequent iteration. Tabu search
heuristics disallow moves likely to recover recently
encountered con�gurations. In this case, the sim-
plest tabu produces good results; the direction of a
legal step for the current iteration must not oppose
the most recently accepted step. For kernels with

more than one parameter a more substantial tabu is
likely to further reduce the computational expense
of model selection.

4.1 Adaptive Step Size Adjustment

A separate step size parameter is associated with
each hyper-parameter optimised during the model
selection process. Each step size parameter is ad-
justed adaptively at the end of every epoch accord-
ing to a procedure based on that used in the RPROP
algorithm [8]. Each time the value of the cost func-
tion is reduced the step size is multiplied by a factor
greater than unity (in this case 1.1), if the cost in-
creases the step size is multiplied by a factor less
than unity (in this case 0.1). The step size is only
updated if the corresponding hyper-parameter was
modi�ed during that epoch. It is assumed that the
kernel parameters, like the regularisation parameter
C, are strictly positive, and so the step size parame-
ters are moderated to ensure that a hyper-parameter
cannot be reduced below a �xed fraction (in this
case 0.5) of its current value during the subsequent
epoch.

5 Results

This section presents initial results obtained using
the model selection procedure outlined in the previ-
ous section on a small, but real-world pattern recog-

nition task. The well known Iris data set (Fisher [9])
consists of 150 records describing the lengths and
widths of the sepals and petals of three varieties
of Iris (Setosa, Versicolour and Virginica). In this
work we aim to �nd the optimal classi�er separating
examples of Versicolour from Setosa and Virginica
varieties, using only the petal length and width at-
tributes. Figure 1 shows the decision boundary
formed by the support vector classi�er used as the
initial estimate in the model selection procedure
(Gaussian radial basis kernel, C = 100;  = 0:5).
This classi�er achieves a training set error of 4%
and a �� bound on the leave-one-out error of 8:7%.
Model selection procedures based on local and

tabu search heuristics, both using adaptive step size

selection, were then performed. Table 1 summarises
the number of times the cost function is evaluated,
the number of iterations performed and the total
elapsed time for each search method. Note that

tabu search, as might be expected, out-performs lo-
cal search in every respect. The tabu heuristic helps
to prevent evaluation of the cost function for con�g-
urations unlikely to lead to a reduction in cost.

Search Epochs Evals Time

Local 36 144 18.9913 sec
Tabu 23 70 8.7215 sec

Table 1. Summary of performance statistics for model

selection methods based on local and tabu

search heuristics.

Figure 2 shows the true leave-one-out cross val-
idation error and ��-bound during model selection
using tabu search. Note it appears that the bound
is not always tight, and that a decrease in the cost
function does not always result in a decrease in the
bound on the leave-one-out error. It should be noted
that the Iris data set is fairly small, with only a small
number of patterns close to the decision boundary.
Only a small number of patterns are then likely to
correspond to leave-one-out errors for any sensible
classi�er. The resulting highly quantised nature of
the leave-one-out cross-validation error may in part
explain the variation in the quality of the �� bound.
Figure 3 shows the decision boundary formed

by the support vector classi�er resulting from
the tabu search model selection procedure
(C = 0:04462;  = 0:3345). Note that this
classi�er is far more heavily regularised, having
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Fig. 1. Decision surface for the support vector clas-

si�er used as the starting point for the model

selection process.



0 5 10 15 20 25
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iteration

E
rr

or
 R

at
e

l−o−o          
ξα−bound

Fig. 2. True leave-one-out cross-validation error and

��-bound during model selection via tabu

search.

a broader margin, but also having a much larger
number of (bound) support vectors. This classi�er
achieves a training set error and �� bound on
the leave-one-out error of 4%. Although the true
leave-one-out error has not decreased, minimising
the ��-bound has produced a subjectively better
solution as Occam's Razor tells us that it is sensible
to prefer heavily regularised decision rules.
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Fig. 3. Decision surface for the support vector classi�er

resulting from the tabu search model selection

process.

6 Summary

This paper describes a practical automatic model
selection procedure for support vector classi�ers
based on tabu search with adaptive step size selec-
tion. This heuristic seems to behave eÆciently and
robustly for a range of initial conditions and search

parameters. Further work is needed to further re-
�ne the cost function and to evaluate performance
on large-scale benchmark pattern recognition tasks.
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