
EÆcient Sequential Minimal Optimisation of

Support Vector Classi�ers

Gavin C. Cawley�1

�School of Information Systems, University of East Anglia, Norwich, Norfolk, U.K. NR4 7TJ. E-mail:
gcc@sys.uea.ac.uk .

Abstract

This paper describes a simple modi�cation to the
sequential minimal optimisation (SMO) training al-
gorithm for support vector machine (SVM) classi-
�ers, reducing training time at the expense of a small
increase in memory used proportional to the number
of training patterns. Results obtained on real-world
pattern recognition tasks indicate that the proposed
modi�cation can more than halve the average train-
ing time.

1 Introduction

The Support Vector Machine (SVM) classi�cation
method has demonstrated impressive results in sev-
eral diÆcult, real-world pattern recognition tasks.
The Sequential Minimal Optimisation (SMO) algo-
rithm has proved one of the most popular train-
ing algorithms for support vector machines, due to
its simplicity and competitive training times possi-
ble. Platt reports that the run-time of the sequen-
tial minimal optimisation algorithm is dominated by
evaluation of the kernel function. This paper de-
scribes a simple modi�cation that reduces the num-
ber of kernel evaluations involving patterns associ-
ated with Lagrange multipliers at the upper bound
C. This modi�cation can be implemented without
a signi�cant increase in the complexity of the code,
and is demonstrated to more than halve training
time at the expense of a modest increase in storage
requirements.
The remainder of this paper is structured as fol-

lows: Section 2 provides an overview of the support
vector pattern recognition method, introducing the
notation adopted in this paper, and section 3 an
overview of the sequential minimal optimisation al-
gorithm. Section 4 describes a simple modi�cation

improving the eÆciency of the sequential minimal
optimisation algorithm. Results obtained on real-
world benchmark tasks are presented in section 5.

1This work was supported by the European Commission,

grant number IST-99-11764, as part of its Framework V IST

programme.

The key results are summarised in section 6.

2 Support Vector Classi�cation

The support vector machine [1, 2], given labelled
training data

f(xi; yi)g
`
i=1

; xi 2 X � R
d ; yi 2 f�1;+1g;

constructs a maximal margin linear classi�er in a
high dimensional feature space, �(x), de�ned by a
positive de�nite kernel function, k(x;x0), specifying
an inner product in the feature space,

�(x) ��(x0) = k(x;x0):

A common kernel is the Gaussian radial basis func-
tion (RBF),

k(x;x0) = e�jjx�x
0
jj
2=2�2 :

The function implemented by a support vector ma-
chine is given by

f(x) =

(X̀
i=1

�iyik(xi;x)

)
� b: (1)

To �nd the optimal coeÆcients, �, of this expansion
it is suÆcient to maximise the functional,

W (�) =
X̀
i=1

�i �
1

2

X̀
i;j=1

yiyj�i�jk(xi;xj); (2)

in the non-negative quadrant,

0 � �i � C; i = 1; : : : ; `; (3)

subject to the constraint,

X̀
i=1

�iyi = 0: (4)

C is a regularisation parameter, controlling a com-
promise between maximising the margin and min-
imising the number of training set errors. The

Karush-Kuhn-Tucker (KKT) conditions can be
stated as follows:

�i = 0) yif(xi) � 1; (5)

0 < �i < C) yif(xi) = 1; (6)

�i = C) yif(xi) � 1: (7)

These conditions are satis�ed for the set of feasible
Lagrange multipliers, �0 = f�0

1
; �0

2
; : : : ; �0`g, max-

imising the objective function given by equation 2.
The bias parameter, b, is selected to ensure that the
second KKT condition is satis�ed for all input pat-
terns corresponding to non-bound Lagrange multi-
pliers. Note that in general only a limited number of
Lagrange multipliers, �, will have non-zero values;
the corresponding input patterns are known as sup-
port vectors. Let I be the set of indices of patterns
corresponding to non-bound Lagrange multipliers,

I = fi : 0 < �0i < Cg;

and similarly J be the set of indices of patterns with
Lagrange multipliers at the upper bound C,

J = fi : �0i = Cg:

Equation 1 can then be written as an expansion over
support vectors,

f(x) =

8<
:
X

i2fI;Jg

�0i yik(xi;x)

9=
;� b: (8)

For a full exposition of the support vector method,
see the excellent books by Vapnik [3, 4] or Cristianini
and Shawe-Taylor [5].

3 Sequential Minimal Optimisation

The sequential minimal optimisation (SMO) al-
gorithm (Platt [6]) implements an extreme form of
the decomposition method of Osuna et al. [7]. SMO
iteratively solves the constrained quadratic optimi-
sation problem, given in equations 2{4, via a series
of smaller optimisation problems, each involving a
single pair of Lagrange multipliers, which may be

solved analytically. The popularity of SMO stems
from the competitive training times that can be ob-
tained without the need for a complex numerical
optimisation library. The functional given in equa-
tion 2 can be written in terms of a pair of Lagrange
multipliers, say �1 and �2, as

W (�1; �2) = �1 + �2 � �1y1v1 � �2y2v2

�
1

2
K11�

2

1
�

1

2
K22�

2

2
� sK12�1�2

+ Wconstant; (9)

where
vi =

X
j 6=f1;2g

�jyjk(xj ;xi);

and
Kij = k(xi;xj):

The linear equality constraint can be expressed in
terms of �1 and �2 alone as

�1 + s�2 = : (10)

Each iteration of the sequential minimal optimisa-
tion algorithm begins with the selection of a pair of
Lagrangemultipliers to jointly optimise. The second
multiplier, �2, is then updated to minimise the func-
tional (9), within the feasible region de�ned by the
linear equality and box constraints (10, 3). The �rst
multiplier, �1, is then updated, substituting the the
new value for the second multiplier into the linear
equality constraint (10). All that remains is to up-
date the bias term, b, preserving the second Karush-
Kuhn-Tucker condition (6).
The �rst Lagrange multiplier is selected by an

outer loop, alternating between single iterations over
the entire training set and multiple passes over pat-
terns corresponding to non-bound Lagrange multi-
pliers. A series of passes over non-bound multipliers
ends if a pass is made without updating a single La-
grange multiplier. The algorithm terminates follow-
ing a pass over all training patterns not resulting
in a reduction in the objective function. The sec-
ond multiplier is chosen according to a sequence of
heuristics: The �rst heuristic selects a non-bound
multiplier corresponding to the error maximising
jE1 �E2j, where Ei is the error for the i

th training
pattern, as this is likely to increase the magnitude of

the update to the second multiplier. If no progress
is made using the �rst choice, the algorithm iterates
over the remaining non-bound multipliers, starting
from a random location. If this also fails the al-
gorithm iterates over all bound multipliers, again
starting from a random location.

4 Method

Platt reports that the run-time of the sequen-
tial minimal optimisation algorithm is dominated
by evaluation of the kernel function. Evaluation
of the kernel function, involving a training pattern
corresponding to a Lagrange multiplier at the up-
per bound (�i = C; i 2 J), arises in two situa-
tions; �rstly during joint optimisation of the La-
grange multipliers associated with such patterns,
but also whenever the output of the support vec-
tor machine is evaluated. The former situation is

unavoidable, and is most likely to occur only during
the intermittent passes through the entire training
set made by the outer loop of the SMO algorithm.
The second situation, however is likely to result in a

signi�cant proportion of kernel function evaluations,
simply because each joint optimisation involving a
Lagrange multiplier at the upper or lower bound will
result in at least one evaluation of the output func-
tion. The support vector expansion given by (8) can
be written as

f(x) = �b+
X
i2I

�0i yik(xi;x) + C
X
i2J

yik(xi;x):

Note that the value of the second summation is
likely to remain constant for much of the time dur-
ing the training procedure. We therefore cache the
value of this term for each training pattern, updated
only when a Lagrange multiplier reaches or leaves
the upper bound, C, during a joint optimisation
(note this involves evaluation of only a single col-
umn of the kernel matrix). This is an example of a
time-space optimisation, improving speed at the ex-
pense of additional storage requirements, however
the costs are low (in the author's implementation,
an additional double precision oating point vari-
able for each training pattern).

5 Results

In this section we present results obtained using
the modi�ed and standard sequential minimal opti-
misation algorithms on a publically available bench
mark data set. Both the standard sequential mini-
mal optimisation algorithm (Platt [6]) and the en-
hanced SMO algorithm, described in the previous
section, were implemented in the Java programming
language (Arnold et al. [8]). Figure 1 shows a graph
of training time as a function of the number of train-
ing patterns for support vector classi�cation net-
works trained on the Adult benchmark problem. A
Gaussian radial basis kernel was used in each case,
with a variance of 10, and with the regularisation
parameter, C, set at unity, conforming to the exper-
imental conditions used in (Platt [6]). Ten networks
were trained for each of the eight partitions of the
data, the mean training times for each partition are
shown in Figure 1.
It can easily be seen that the enhanced sequen-

tial minimal optimisation algorithm is signi�cantly
faster than the standard algorithm for all partitions
of the data, the improvement in performance in-
creasing slightly as the number of training patters
increases. The variability in training time using the
enhanced algorithm also appears to be reduced. It

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3

4

5

6

7

8
x 10

7

number of training patterns

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

smo
fast smo

Fig. 1. Mean training time for 10 support vector ma-

chines trained on the Adult bench mark data

set, as a function of the number of training pat-

terns used.

appears that the sequential minimal optimisation al-
gorithm sometimes experiences diÆculty converging
to the optimal solution, resulting in a large number
of passes through the entire data set. The proposed
modi�cation is most useful in such circumstances
as it reduces the cost of evaluations of the support
vector expansion.

6 Summary

This paper describes a simple method improving
the eÆciency of the sequential minimal optimisa-
tion algorithm for support vector classi�cation. This
technique is likely to be most useful for diÆcult pat-
tern recognition tasks, with a high degree of over-
lap in the distribution of patterns belonging to each
class and therefore a large number of bound support
vectors. Naturally the improvement in training time
will be greatest for computationally expensive ker-
nel functions, and smallest (i.e. nil) in the case of
linear support vector machines, where in principle
the output function can be computed without eval-
uating the kernel function [6].

7 Acknowledgements

The author would like to thank Rob Foxall for
his helpful comments on previous drafts of this
manuscript.

References

[1] B. Boser, I. Guyon, and V. N. Vapnik, \A
training algorithm for optimal margin classi-
�ers," in Proceedings of the �fth annual workshop

on computational learning theory, (Pittsburgh),
pp. 144{152, ACM, 1992.

[2] C. Cortes and V. Vapnik, \Support vector net-
works," Machine Learning, vol. 20, pp. 1{25,
1995.

[3] V. N. Vapnik, The Nature of Statistical Learning
Theory. New York: Springer-Verlag, 1995.

[4] V. N. Vapnik, Statistical Learning Theory. Wi-
ley Series on Adaptive and Learning Systems

for Signal Processing, Communications and Con-
trol, New York: Wiley, 1998.

[5] N. Cristianini and J. Shawe-Taylor, An Intro-

duction to Support Vector Machines (and other

kernel-based learning methods). Cambridge,
U.K.: Cambridge University Press, 2000.

[6] J. C. Platt, \Fast training of support vector ma-
chines using sequential minimal optimization,"
in Advances in Kernel Methods - Support Vec-

tor Learning (B. Sch�olkopf, C. J. C. Burges, and
A. J. Smola, eds.), ch. 12, pp. 185{208, Cam-
bridge, Massachusetts: MIT Press, 1999.

[7] E. Osuna, R. Freund, and F. Girosi, \An im-
proved training algorithm for support vector ma-
chines," in Neural Networks for Signal Process-

ing VII - Proceedings of the 1997 IEEE Work-

shop (J. Principe, L. Gile, N. Morgan, and
E. Wilson, eds.), (New York), pp. 276{285,
IEEE, 1997.

[8] K. Arnold, J. Gosling, and D. Holmes, The

Java Programming Language. Addison-Wesley,
third ed., 2000.

