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Abstract. Prediction of episodes of poor air quality using artificial
neural networks is investigated. Logistic regression, conventional sum-
of-squares regression and heteroscedastic sum-of-squares regression are
employed for the task of predicting real-life episodes of poor air qual-
ity in urban Belfast due to SO2. In each case, a Bayesian regularisation
scheme is used to prevent over-fitting of the training data and to provide
pruning of redundant model parameters. Non-linear models assuming a
heteroscedastic Gaussian noise process are shown to provide the best
predictors of pollutant concentration of the methods investigated.

1 Introduction

Belfast is unusual within the U.K. in that a significant fraction of the city’s do-
mestic heating is derived from coal burning, resulting from limited availability
of natural gas. This leads to relatively low-level SO, emission, the efficient dis-
persion of which is highly dependent on meteorological conditions. Episodes of
high ground-level SOy concentrations caused by emissions from tall stacks are
mostly short-lived, however the longevity of SO2 episodes caused by low-level
emission may be more extended; meteorological conditions which are uncon-
ducive to efficient dispersion may persist for a period of hours to days. Given
the health implications of exposure to high concentrations of SO, it is impor-
tant to develop accurate forecast models for both the occurrence and severity
of episodes of poor air quality. An ideal model should therefore produce and
accurate forecast of the expected concentration of a given pollutant and some
means of estimating the probability that the observed concentration will exceed
a preset statutory threshold level. In this paper, we compare three error func-
tions for training multi-layer perceptron neural networks models of atmospheric
pollution that attempt to address these requirements.

2 Neural Models of Air Pollution Time-Series

The parameters of a neural network model, w, are normally determined by some
form of gradient descent optimisation of an appropriate error function, Ep, over



a set of labelled training examples,
D={(zi,t:)}iy, TEXCR!, €T CR

where t; € (0, 1) for prediction of exceedences of statutory thresholds and ¢; €
Rt for prediction of pollutant concentrations based on a vector of meteorological
and other input variables x;. It has often been observed that simple maximum-
likelihood estimates for the parameters of complex models often lead to severe
over-fitting of the training data. In order to overcome this problem, we use
instead a regularised error function, adding a term Eyy penalising overly-complex
models,
M = aEyy + BEp,

where a and [ are regularisation constants controlling the bias-variance trade-off.
In this study we adopt the Bayesian regularisation scheme due to Williams [1],
using a Laplace prior, i.e.

N
Ew = Z |w’l|7
i=1

in which the regularisation parameters a and § are integrated out analytically in
the style of Buntine and Weigend [2]. An added advantage of the Laplace prior,
rather than the usual Gaussian weight decay, is that redundant weights are set
exactly to zero and can be pruned from the network. In the remainder of this
section, we consider three data misfit terms, Fp, for use in predicting episodes
of poor air quality.

2.1 Logistic Regression

Logistic regression provides perhaps the most straight forward approach to pre-
dicting exceedences of statutory threshold concentrations. Assuming the target
patterns, t;, are an independent and identically distributed (i.i.d) sample drawn
from a Bernoulli distribution (¢; = 1 indicates an exceedence, t; = 0 indicates no
exceedence), conditioned on the corresponding input vectors, x;, minimisation
of the familiar cross-entropy error metric given by

¢
Ep = - Z {tilogy; + (1 — t;)log(1 — y:)} (1)

corresponds to maximisation of the likelihood of the data D. The output layer
activation function is taken to be the logistic function, g(a) = 1/(1 + exp{—a}),
restricting the output of the model to lie in the range (0, 1). Under these con-
ditions the output of the model is a penalised maximum likelihood estimate of
the Bayesian a-posteriori probability of an exceedence. Unfortunately, this error
metric cannot be used to obtain a direct forecast of the concentration of a given
pollutant, but only an indication of the likelihood this this concentration exceeds
a fixed threshold.



2.2 Conventional Sum-Of-Squares Regression

The sum-of-squares metric, Ep = Zle (t; — y;)?, with a linear output layer
activation function corresponds to penalised maximum likelihood estimation of
the conditional mean of the target values, assuming a Gaussian noise process
with constant variance. This model can be simply extended to give the probabil-
ity of an exceedence: The maximum likelihood estimate for the variance of the
(Gaussian) target distribution is given by

¢
Z(ti — ).

The probability that the observed concentration, ¢, exceeds a given threshold
level, C, is then given by integrating the upper tail of the Gaussian probability
density function, i.e.

p(c>C|:1:):/Oo L Aexp{[z_y(w)]z}dz.
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2.3 Heteroscedastic Sum-of-Squares Regression

A heteroscedastic regression model relaxes the assumption that the variance
of the noise process is constant, and so attempts to estimate both the condi-
tional mean and variance of the target distribution (e.g. Nix and Weigend [3],
Williams [4]). For a Gaussian noise process, the network then has two output
units, y#, estimating the conditional mean of the target distribution and y”
estimating the conditional standard deviation. The negative logarithm of the
likelihood is then given by

N

1 [tl — yf]2 o\2
i=1 2

which can be used to form a penalised maximum likelihood error metric as
before. Again, the probability of an exceedence is given by the integral of the
probability density function of the noise process above the exceedence threshold,
replacing the constant variance ¢ by an input-dependent variance o ().

3 Results

The error metrics given in the previous section are applied to the task of pre-
diction of episodes of poor air quality in urban Belfast due to SO». The target
data provide hourly measurements of SO, taken from a Belfast monitoring sta-
tion over the years 1993-1996. For any prediction of SO2 concentration to be of
practical use it must be made at least a day in advance, hence the explanatory
variables include an autoregressive component beginning no later than (7" — 24)



hours, where T denotes the time in hours at which a prediction is required.
Other input variables include meteorological variables such as temperature, wind
speed/direction and visibility, and day of the week, Julian day, and hour of the
day. Since a Gaussian distribution is inconsistent with the observed data (being
strictly positive), the final target values are the logarithm of the observed SO,
concentrations. Hence the mean prediction models of non-linear heteroscedas-
tic Gaussian (NLG), non-linear sum-of-squares (NLS) and linear sum-of-squares
(LS) are fitting maximum likelihood estimates for a log-normal distribution,
while the the non-linear logistic (NLG) and linear logistic (LL) are fitting max-
imum likelihood estimates for a Bernoulli distribution. An exceedence is said to
have occurred if the hourly mean SO, concentration is greater than 350ugm 3.
In each case, the performance statistics are computed using a four-fold cross-
validation procedure, where the disjoint test partitions used in each trial are
defined by the year in which the observations were made.

3.1 ROC Analysis

The Receiver operating characteristic (ROC) of a classifier graphically displays
the trade-off between false negative (1— true positive) and false positive rates
obtained by varying some parameter of the model. In this case the parameter
varied is the threshold probability above which an exceedence is predicted. The
area under the ROC curve gives an indication of the effectiveness of a classifier,
assuming that nothing is known about the optimal ratio of misclassification costs,
unity being optimal. Table 1 gives the area under the ROC curve and rankings
for each model. Note the linear sum-of-squares and linear logistic regression
models are both poorly calibrated in that both consistently underestimate the
probability of an exceedence, however this shortcoming is not revealed by the
ROC diagram.

Table 1. Area under the ROC curve for models considered.

‘Model ‘ Area under ROC ‘Rank‘

NLG 0.9405 5
NLS 0.9511 4
NLL 0.9605 2
LS 0.9576 3
LL 0.9625 1

3.2 Log-likelihood Analysis

Table 2 shows the log-likelihood computed over cross-validation test partitions
for the models considered. The likelihood for the task of predicting the occur-
rence of an exceedence, given in the second column, are calculated using the the



cross-entropy metric to evaluate the accuracy of estimates of probability of an
exceedence. The likelihoods for the prediction of the concentration of SO» are
computed using the error metrics given in the previous section.

Table 2. Log-likelihoods for considered models.

Model|log-likelihood [Rank|log-likelihood |Rank
(occurrence) (prediction)
NLG |-1016.2 (-951.9)|5 (4) |-213607 (-33274)|3 (1)
NLS |-992.0 4 (5) |-34597 1(2)
NLL [-809.1 1(1) [* *
LS |-916.0 3 (3) |-36316 2 (3)
LL |-841.7 2(2) |* *

As expected, the NLL and LL models out perform the other models in pre-
diction of exceedences, being free of distributional assumptions regarding the
noise process contaminating observations of SOy concentrations. Another inter-
esting feature is the relatively poor performance of the NLG model compared
to the less flexible NLS and LS models, however if the heteroscedastic variance
structure is ignored and the predicted mean values used along with usual sum-
of-squares estimate for the homoscedastic variance, the NLG model provides a
significantly improved log-likelihood (shown in parentheses in Table 2). This is
likely to be due to the observation that maximum-likelihood estimates of vari-
ance are biased since over-fitting in the model of the conditional mean reduces
the apparent variance of the noise process.

3.3 McNemar’s Test

Given two classifiers A and B, which classify each data point either correctly or
incorrectly, McNemar’s test [5] decides whether the the number of occasions that
A is correct and B is incorrect is essentially the same as the number of occasions
on which A is incorrect and B is correct. Table 3 gives the probabilities of the
paired classifiers being essentially the same for each of the possible pairings. The
lower triangle of the table gives the better classifier by this system for each pair.
A (conservative) Bonferroni adjusted significance level of 0.005 is used to ensure
a final significance level of 0.05 over all tests, and so there is no evidence that
any of the models predict exceedences more accurately than any other.

4 Summary

In this paper, non-linear logistic regression models have demonstrated the best
performance for the task of predicting episodes of poor air quality in Belfast due



Table 3. McNemar’s test for considered models.

non-linear non-linear non-linear linear linear
Gaussian sse logistic sse logistic
(NLG) (NLS) (NLL) (LS) (LL)

NLG 1 0.0535 0.0614  0.8750 0.2190

NLS NLG 1 1.0000 0.1010 0.6450

NLL NLG NLS 1 0.0966 0.4890

LS NLG LS LS 1 0.2120
LL NLG LL LL LS 1

to SO2, although the differences in performance between classifiers are not statis-
tically significant. None of the methods investigated however, provide a reliable
predictor for exceedences of the statutory threshold concentration, assuming that
the costs of false-positive and false-negative errors are equal. The non-linear het-
eroscedastic regression model provides the best estimate of the conditional mean
of the concentration of SO;. A further advantage of these models is that they
can be doubly calibrated; not only is it possible to determine the probability
that a pollutant exceeds a fixed threshold, accommodating changes in the costs
of false-positive and false-negative errors, but also these models can still be used
following a change in threshold level, due perhaps to the introduction of more
stringent legislation.
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