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Abstract. Suykens et al. [1] describes a form of kernel ridge regression
known as the least-squares support vector machine (LS-SVM). In this
paper, we present a simple, but efficient, greedy algorithm for construct-
ing near optimal sparse approximations of least-squares support vector
machines, in which at each iteration the training pattern minimising the
regularised empirical risk is introduced into the kernel expansion. The
proposed method demonstrates superior performance when compared
with the pruning technique described by Suykens et al. [1], over the mo-
torcycle and Boston housing datasets.

1 Introduction

Ridge regression [2] is a method from classical statistics that implements a reg-
ularised form of least-squares regression. Given training data,
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ridge regression determines the parameter vector, w € R?, of a linear model,
f(x) =w - x + b, by minimising the objective function

¢
W(w) = lhwll? + T3 (s — w0~ b 1)
i=1

The objective function used in ridge regression (1) implements a form of Tikhonov
regularisation [3] of a sum-of-squares error metric, where - is a regularisation pa-
rameter controlling the bias-variance trade-off [4]. This corresponds to penalised
maximum likelihood estimation of w, assuming the targets have been corrupted
by an independent and identically distributed (i.i.d.) sample from a Gaussian
noise process, with zero mean and variance o2, i.e.

yi=w-x;+b+e, €~N(0,0%).

A non-linear form of ridge regression [1, 5, 6], the least-squares support vec-
tor machine, can be obtained via the so-called “kernel trick”, whereby a lin-
ear ridge regression model is constructed in a high dimensional feature space,



F (¢ : X > F), induced by a non-linear kernel function defining the inner prod-
uct K(z,z'") = ¢(x) - ¢(x'). The kernel function, £ : X x X — R may be any
positive definite “Mercer” kernel. The objective function minimised in construct-
ing a least-squares support vector machine is given by

£
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The representer theorem [7] indicates that the solution of an optimisation prob-
lem of this nature can be written in the form of an expansion involving training
patterns, i.e. w = Ele a;¢(x;). The output of the least-squares support vector
machine is then given by the kernel expansion

¢
fl@) =) aik(zi,z) +b.
i=1

It can easily be shown [5,6] that the optimal coefficients of this expansion are
given by the solution of a set of linear equations
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where 2 = K + E’Y_II, K = [kl] = K(wiawj)]ij:l: Yy = (ylayQJ"'ayZ)Ta
a=(a,as,...,a)T and 1 =(1,1,...,1)T.

1.1 Imposing Sparsity

Unfortunately, unlike the support vector machine, the kernel expansion imple-
menting a least-squares support vector machine is in general fully dense, i.e.
a; # 0, Vi€ {1,2,...,£}; this, along with the O(£?) space and O(¢3) time
complexities of the training algorithm make this approach impractical for very
large-scale applications. Suykens et al [6] propose an iterative pruning proce-
dure to obtain a sparse approximation of the full kernel expansion: A LS-SVM is
trained on the entire dataset, yielding a vector of coefficients, . A small fraction
of the data (say 5%), associated with coefficients having the smallest magnitudes,
is discarded and the LS-SVM retrained on the remaining data. This process is
repeated until a sufficiently small kernel expansion is obtained. Model selection
is performed at each iteration to refine values for the regularisation parameter,
v and any kernel parameters, in order to obtain adequate generalisation. In this
paper we propose a constructive training algorithm for sparse approximation of
least-squares support vector machines, adding terms to the kernel expansion in
a greedy manner. The proposed algorithm also takes into account the residuals
of all training patterns, rather than just those included in the kernel expansion,
eliminating the need for further model selection.



2 Method

We begin by introducing an improved formulation of the objective function that
includes the residuals for all training patterns, rather than just those patterns
currently included in the kernel expansion. If the weight vector, w, can be closely
approximated by a weighted sum of a limited subset of the training vectors, i.e.,
w R Y s Bid(xi), S C {1,2,... ¢}, then we obtain the objective function
minimised by the greedy sparse least-squares support vector machine

¢
L(B,b) = % > BiBjki; + %Z(yz’ = Bjkij — b)>. (2)
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Setting the partial derivatives of £ with respect to 8 and b to zero, and dividing
through by 2v/¢, yields:

4 4
S8 ky+tb="y;
j=1

eSS  j=1

and
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These equations can be expressed as a system of |S|+1 linear equations in |S|+1

unknowns,
o] =L d 1] = sl

where £2 = [kij + 31 krjkrilijes, & = (X kij)ies, € = (Xjo; yikij)ies-
Starting with only a bias term, b, a sparse kernel machine is iteratively con-
structed in a greedy manner. During each iteration, the training pattern minimis-
ing the objective function (2) is incorporated into the kernel expansion. Training
can be terminated once the kernel expansion has reached a pre-determined size,
or if the reduction in the objective function falls below some threshold value.
Note further model selection is not generally necessary as the second summation
of (2) is over all training patterns.

2.1 Efficient Implementation

At each iteration, H is extended by additional row and column. The inversion
of H; at the i*" iteration can be performed efficiently given H i_—ll computed
during the previous iteration, via the block matrix inversion identity
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where § = (D — CA™'B). In this case, C and B are row and column vectors
respectively and D is a scalar, and so S is also a scalar, giving
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where k = ¢ — bY A~'b. This allows the inversion of H; with a complexity of
only O(n?) operations.

3 Results

The Motorcycle benchmark consists of a sequence of accelerometer readings
through time following a simulated motor-cycle crash during an experiment to
determine the efficacy of crash-helmets (Silverman [8]). Figure 1 shows con-
ventional and greedy sparse support vector machine models of the motorcycle
dataset, using a Gaussian radial basis function kernel,

K(z,z') = exp {—o 7%z — '||*}.

The greedy sparse model is functionally identical to the full least-squares support
vector machine model with only 15 basis vectors comprising the sparse kernel ex-
pansion. Figure 2 compares the 10-fold root-mean-square (RMS) cross-validation
error of greedy sparse and pruned least-squares support vector machines as a
function of the number of training patterns included in the resulting kernel ex-
pansions. The regularisation and kernel parameters for the pruned model were
determined in each trial via minimisation of the 10-fold cross-validation error.
The cross-validation error is consistently lower for the greedy sparse model re-
gardless of the number of patterns forming the kernel expansion, without the
need for further model selection.

The Boston housing dataset describes the relationship between the median
value of owner occupied homes in the suburbs of Boston and thirteen attributes
representing environmental and social factors believed to be relevant [9]. Figure 3
compares the 10-fold root-mean-square (RMS) cross-validation error of greedy
sparse and pruned least-squares support vector machines. Again the error for
the greedy sparse method is consistently lower.

4 Summary

This paper presents a simple but efficient greedy training algorithm for con-
structing sparse approximations of least-squares support vector machines. The
proposed algorithm demonstrates performance superior to that of the pruning
algorithm of Suykens et al. [1] on two real-world benchmark tasks. The new algo-
rithm is also considerably faster as the need for model selection in each iteration
is eliminated. The method also provides a plausible approach for large-scale re-
gression problems as it is no longer necessary to store the entire kernel matrix
at any stage during training.
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Fig. 1. Least-squares support vector machine (LS-SVM) and greedy sparse least-
squares support vector machine (GSLSSVM) models of the motorcycle data set; note
the standard and sparse models are essentially identical.
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Fig. 2. Cross-validation error of greedy sparse (GSLSSVM) and sparse (SLSSVM)
least-squares support vector machine models, over the motorcycle dataset, as a function
of the number of training patterns included in the resulting kernel expansions.
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Fig. 3. Cross-validation error of greedy sparse (GSLSSVM) and sparse (SLSSVM)
least-squares support vector machine models, over the Boston housing dataset, as a
function of the number of training patterns included in the resulting kernel expansions.
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