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Abstract.

Statistical downscaling methods seek to model the relationship between
large scale atmospheric circulation, on say a European scale, and climatic
variables, such as temperature and precipitation, on a regional or sub-
regional scale. Downscaling is an important area of research as it bridges
the gap between predictions of future circulation generated by General
Circulation Models (GCMs) and the effects of climate change on smaller
scales, which are often of greater interest to end-users. In this paper we
describe a neural network based approach to statistical downscaling, with
application to the analysis of events associated with extreme precipitation
in the United Kingdom.

1 Introduction

General circulation models are considered to provide the best basis for esti-
mating future climates that might result from anthropogenic modification of
the atmospheric composition (i.e., the enhanced greenhouse effect). However,
output from these models cannot be widely or directly applied in many impact
studies because of their relatively coarse spatial resolution. The mismatch in
scales between model resolution and the increasingly small scales required by
impacts (e.g., agriculture and hydrology) analyses can be overcome by down-
scaling. Two major approaches to downscaling, statistical and dynamical (the
latter using physically-based regional climate models), have been developed and
tested in recent years, and shown to offer good potential for the construction
of high-resolution scenarios of future climate change [1-4]. Statistical down-



scaling methods are based on the application of relationships identified in the
real world, between the large-scale and smaller-scale climate, to climate model
output and on two major assumptions: first, that variables representing large
scale atmospheric processes (such as sea level pressure, geopotential height and
relative humidity) are more reliably simulated by climate models than variables
describing the smaller scale dynamics (such as rainfall); and, second, that the
relationships between the large-scale and regional/local scale variables remain
valid in a changed climate. In this paper we present the initial results of a
study comparing error metrics for training neural network models for statis-
tical downscaling of daily rainfall at stations covering the north-west of the
United Kingdom, with application to modelling extreme events.

2 Method

For this study, we adopt the familiar Multi-Layer Perceptron network architec-
ture (see e.g. Bishop [5]). The optimal model parameters, w, are determined
by gradient descent optimisation of an appropriate error function, Ep, over a
set of training examples, D = {(whti)}i]\il, x; € X C R t; € R, where x;
is the vector of explanatory variables and t; is the desired output for the "
training pattern. The error metric most commonly encountered in non-linear

regression is the sum-of-squares error, given by

N

Ep = %Z(Z/z — )%, (1)
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where y; is the output of the network for the i*" training pattern. In order
to avoid over-fitting to the training data, however, it is common to adopt a
regularised [6] error function, adding a term FEyy, penalising overly-complex
models, i.e.

M = aFEw + BEp, (2)

where a and 3 are regularisation parameters controlling the bias-variance trade-
off [7]. Minimising a regularised error function of this nature is equivalent to
the Bayesian approach which seeks to maximise the posterior density of the
weights (e.g. [8]), given by P(w | D) x P(D | w)P(w) where P(D | w) is the
likelihood of the data and P(w) is a prior distribution over w. The form of
the functions Ep and Eyy correspond to distributional assumptions regarding
the data likelihood and prior distribution over network parameters respectively.
The usual sum-of-squares metric (1) corresponds to a Gaussian likelihood,

[ti — y(;)]?

Ep = %Z(yz —t;)?, <= PD|w)= 7/2;? eXP{—T}

with fixed variance 0> = 1/3. For this study, we adopt the Laplace prior
propounded by Williams [9], which corresponds to a L; norm regularisation



term,
S 1 ol
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where W is the number of model parameters. An interesting feature of the
Laplace regulariser is that it leads to pruning of redundant model parameters.
From 2, at a minimum of M we have
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As a result, any weight not obtaining the data misfit sensitivity of a/f3 is set
exactly to zero and can be pruned from the network.

OE,
ﬁwi

w; > 0, ‘

2.1 Eliminating Regularisation Parameters

To avoid the need for a lengthy search for the optimal regularisation parameters,
a and (3, they are integrated out analytically [9]. Adopting the (improper)
uninformative Jeffreys prior, p(a) = 1/« [10], applying the same treatment to
the data misfit term (assuming a sum-of-squares error) and taking the negative
logarithm (omitting irrelevant additive terms), we have

1
L= §N10ng + Wlog Fyy.

For a network with more than one output unit, it is sensible to assume that each
output has a different noise process (and therefore a different optimal value for
B). It is also sensible to assign hidden layer weights and weights associated
with each output unit to different regularisation classes so they are regularised
separately. This leads to the training criterion used in this study:

N & R .
L= ?ZlogE% +2Wj log E3,,,

i=1 j=1

where O is the number of output units, C' is the number of regularisation classes
(groups of weights sharing the same regularisation parameter) and W is the
number of non-zero weights in the j* class. Note that bias parameters should
not be regularised.

2.2 Choice of Data Misfit Term

In addition to the usual sum-of-squares error metric, which corresponds to the
implicit assumption of a Gaussian noise process, we intend to investigate other
data misfit terms corresponding to more realistic assumptions regarding the
actual noise process, for example frontal precipitation is often modelled using
a Gamma distribution [11] or a mixture of exponentials [12]. In this paper
we begin by evaluating the hybrid Bernoulli/Gamma error metric proposed by



Williams [13]. The distribution of the amount of precipitation, X, is modelled
by
1 ifx<0

P<X>x):{ozl“(u,§) ifx>0 3)

where 0 < a < 1, v >0, 8 > 0 and I'(v, 2) is the (upper) incomplete Gamma
function, I'(v,z) = T(v)~! [7°y*"'e ¥dy. The model is then trained to ap-
proximate the conditional probability of rainfall a(x;) and the scale, 8(x;), and
shape, v(x;), parameters of a Gamma distribution modelling the predictive dis-
tribution of the amount of precipitation. Logistic and exponential activation
functions are used in output layer neurons to ensure that the distributional
parameters satisfy the constraints given previously.

3 Results

Artificial neural networks were then trained, using sum-of-squares and hybrid
Bernoulli/Gamma data misfit terms, to model daily precipitation time series
from 12 stations across the north-west of the United Kingdom, covering the
period from Jan 151960 to Dec 31%¢ 2000. The input to the model consisted of
a set of 28 variables describing regional climatic conditions, for instance atmo-
spheric pressure, temperature and humidity, extracted from the NCEP/NCAR
reanalysis dataset [14]. An average over the predictions of twenty networks is
taken in each experiment in order to provide some degree of robustness to the
presence of local minima in the cost function. A simple two-fold cross-validation
scheme was employed in assessing the performance of each cost function for
each station, where the data was partitioned into contiguous sets describing
the years 1960 — 1980 and 1981 — 2000. Tables 1 and 2 show the results ob-
tained using sum-of-squares and hybrid Bernoulli/Gamma data misfit terms,
for five test statistics for each of the twelve stations. The first statistic mea-
sures the root-mean-squared error (RMSE), giving a general indication of the
ability of a model to reproduce the observed precipitation time series. The hy-
brid Bernoulli/Gamma model out-performs the sum-of-squares metric for every
station (although the difference in performance is small). The remaining four
statistics relate to the ability of the model to predict the occurrence of extreme
precipitation. We define an extreme event as the occurrence of rainfall at levels
above the 90" or 95" percentile of entire time-series for a given station. The
probability of an excedance can be calculated by simply integrating the upper
tail of the predictive distribution above the appropriate threshold level. It is
then appropriate to measure the ability of the model to identify extreme events
using the cross-entropy and area under the ROC curve statistics (since the mis-
classification costs are unknown). Again the hybrid Bernoulli/Gamma models
out-perform the more conventional sum-of-squares metric for all statistics, for
all stations.



Table 1: Results for sum-of-squares data misfit term.

Station RMSE AUROCQO XENT90 AUROCQ5 XENT95
Appleby Castle | 3.7444 0.8667 3320.73 0.8911 1991.08
Carlisle 3.6433 0.8436 3737.49 0.8604 2318.02
Douglas 4.9440 0.8494 3447.95 0.8559 2274.04
Haydon Bridge 3.5732 0.8235 4123.04 0.8497 2320.32
Keele 3.6136 0.8354 3864.68 0.8485 2428.67
Loggerheads 4.2811 0.8360 4035.75 0.8511 2411.00
Lyme Park 3.9568 0.8552 3365.60 0.8724 2144.30
Morecambe 4.2112 0.8674 3320.85 0.8809 2148.81
Newton Rigg 3.8326 0.8745 3440.64 0.8860 2224.12
Pen Y Ffridd 4.6962 0.8484 3490.81 0.8814 2114.63
Ringway 3.7558 0.8352 3432.96 0.8531 2106.55
Slaidburn 5.5720 0.8933 3045.82 0.9097 1953.09

Table 2: Results for hybrid Bernoulli-Gamma misfit term.

Station RMSE | AUROCy | XENTy | AUROCy; | XENTys
Appleby Castle | 3.6934 0.8732 3085.66 0.8943 1881.61
Carlisle 3.6106 0.8504 3542.59 0.8661 2191.44
Douglas 4.9033 0.8548 3318.07 0.8611 2118.66
Haydon Bridge 3.5417 0.8324 3752.74 0.8546 2300.11
Keele 3.5929 0.8391 3695.27 0.8500 2329.65
Loggerheads 4.2519 0.8415 3704.52 0.8535 2336.00
Lyme Park 3.9354 0.8572 3285.96 0.8748 2026.60
Morecambe 4.1741 0.8708 3216.94 0.8818 2018.83
Newton Rigg 3.7755 0.8813 3226.18 0.8891 2063.19
Pen Y Ffridd 4.6787 0.8489 3370.69 0.8822 1988.07
Ringway 3.7066 0.8411 3242.77 0.8580 2016.91
Slaidburn 5.5389 0.8985 2895.57 0.9116 1795.75

4 Summary

In this paper we have described the use of multi-layer perceptron networks in
statistical downscaling of daily precipitation at a network of stations covering
the north-west of the United Kingdom. Furthermore, we have demonstrated
that the use of an error metric incorporating realistic distributional assump-
tions results in consistently higher performance than is obtained using the more
conventional sum-of-squares error metric. Further work is in progress to inter-
compare the performance of a wider range of realistic error metrics, such as a
mixture of exponential or Gamma distributions.
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