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Abstract.

Mika et al. [1] introduce a non-linear formulation of the Fisher discrimi-
nant based the well-known “kernel trick”, later shown to be equivalent to
the Least-Squares Support Vector Machine [2, 3]. In this paper, we show
that the cross-validation error can be computed very efficiently for this
class of kernel machine, specifically that leave-one-out cross-validation
can be performed with a computational complexity of only O(£*) oper-
ations (the same as that of the basic training algorithm), rather than
the O(¢*) of a direct implementation. This makes leave-one-out cross-
validation a practical proposition for model selection in much larger scale
applications of KFD classifiers.

1 Introduction

Assume we are given training data X = {xy,xa,...,x,} = {X), A} C RY,
where X; = {x],x},... ,w}l} is a set of patterns belonging to class C; and
similarly Xo = {«7,23,..., 27} is a set of patterns belonging to class Ca;

Fisher’s linear discriminant (FLD) attempts to find a linear combination of
input variables, w - x, that maximises the average separation of the projections
of points belonging to C; and Cs, whilst minimising the within class variance of
the projections of those points. The Fisher discriminant is given by the vector
w maximising
wT Spw
Jw) = 22 (1)

where Sp is the between class scatter matrix Sp = (m; — ma)(m; — ma)7T,

m; = é;l Zf’zl @ and Sy the within class scatter matrix

£;
Sw = Z Z(m; - mz)(w; —my)T.
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The innovation introduced by Mika et al. [1] is to construct Fisher’s linear
discriminant in a fixed feature space F (¢ : X — F) induced by a positive
definite Mercer kernel K : X x X — R defining the inner product K(z,x’) =
¢(x)-p(x') (see e.g. Cristianini and Shawe-Taylor [4]). Let the kernel matrices
for the entire dataset, K, and for each class, K1 and K5 be defined as follows:

K = [kyj = K(zi, )]

ij=1 and K= [k =Kz, @))520

The theory of reproducing kernels indicates that w can then be written as an
expansion of the form

14
w=>Y " a;px). (2)
i=1

The objective function (1) can also be written such that the data & € X’ appear
only within inner products, giving

(3)

where a = {a; }i_;, M = (my —my)(my —m2)T, m; = K;u;, u; is a column
vector containing /; elements with a common value of K{l and

N= > KI-U)K],
i€{1,2}

where I is the identity matrix and U; is a matrix with all elements equal to
07, The coefficients, a, of the expansion (2) are then given by the leading
eigenvector of N 'M. Note that IV is likely to be singular, or at best ill-
conditioned, and so a regularised solution is obtained by substituting N, =
N + pl, where i is a regularisation constant. To complete the kernel Fisher
discriminant classifier, f(x) = w - ¢(x) + b, the bias, b, is given by

LMy + 0o My
.

Xu et al. [3] show that the parameters of the kernel Fisher discriminant clas-
sifier are also given by the solution of the following system of linear equations:

et L] e ©
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where 1 is a column vector of £ ones and y is a column vector with elements
y; = 0/0; ¥i: x; € X;. Thisillustrates the similarities between the kernel Fisher
discriminant and the least-squares support vector machine (LS-SVM) [2]. The
kernel Fisher discriminant (KFD) classifier has been shown experimentally to
demonstrate near state-of-the-art performance on a range of artificial and real
world benchmark datasets [1] and so is worthy of consideration for small to
medium scale applications. In this paper we present an efficient algorithm for
approximate cross-validation of kernel Fisher discriminant models, providing a
practical criterion for model selection.



2 Method

The system of linear equations (4) can be written more concisely in the form

[ o } - [R+ZTZ} Y27y,
where Z = [K 1] and R = diag([p1 0]) (n.b. this is very similar to the set of
normal equations to be solved in multi-variate linear regression). At each step
of the leave-one-out cross-validation procedure, a kernel Fisher discriminant
classifier is constructed excluding a single training pattern from the data. The
vector of model parameters, {a(i), b(i)} at the 7*" iteration is then given by the
solution of a modified system of linear equations,

i)y | T -1
[ by ] = {R+Z<i>z<i>} Ziy
where Z ;) is the sub-matrix formed by omitting the i™ row of Z. Normally
the most computationally expensive step is the inversion of the matrix C\;) =

R+ Za)Z(i)], with a complexity of O(¢%) operations. Fortunately C ;) can
be written as a rank one modification of a matrix C,
Cu = {R(i) +z"7 — zizﬂ = [C —z;2]], (5)

where z; is the i*" row of Z. The following matrix inversion lemma then allows
C(;)l to be found in only O(¢?) operations, given that C ™' is already known:

Lemma 1 (Bartlett Matrix Inversion Formula) Given an invertible ma-
triz A and column vectors w and v, then assuming 1 —vT A ™ u £ 0,

— A luvT AL
A+ uv’ R e 6
( wo ) 1+v7TA (©)

This is known as the Bartlett matrixz inversion formula [5].

Applying the Bartlett formula to the matrix inversion problem given in (5), we
have that

C'zzl'c™!

1-2TCc 'z

The computational complexity of the leave-one-out cross-validation process is
thus reduced to only O(£3) operations, which is the same as that of the basic
training algorithm for the kernel Fisher discriminant classifier. In the case of
S-fold cross-validation, ¢/S applications of the Bartlett correction formula (6)
are performed in each trial to “erase” one of S disjoint sets of £/S training
patterns from the kernel Fisher discriminant classifier trained on the entire
dataset, again resulting in a computational complexity of O(¢3) operations.

Ci=[C-zz{]"'=C+



2.1 A Further Refinement

For model selection purposes, we are not principally concerned with the values
of the model parameters themselves, but only statistics such as the leave-one-
out error rate

1
E= anrd{i cyi(wey - @) + by) < 03,

or equivalently
1
E= anrd{z’ ssign(yi){re) b < -1},

where {rq)}, = sign(y;) — w) - ¢(x:) + by is the residual error for the it
training pattern during the i*? iteration of the leave-one-out cross-validation
procedure. It can be shown that

1

U} = 7o
where r; = sign(y;) — w - ¢(x;) + b is the residual error for the i*" training
pattern for a kernel Fisher discriminant classifier trained on the entire dataset,
H = ZC'Z" is the hat matrix of which h;; is the i*® element of the lead-
ing diagonal. The leave-one-out error rate can thus be evaluated in closed
form without explicit inversion of C;) Vi € {1,2,...,£}, with a computational
complexity of only O(¢?) operations.

3 Results

The proposed approximate leave-one-out cross-validation method is evaluated
over a series of randomly generated synthetic datasets. In each case, approxi-
mately one quarter of the data belong to class C; and three-quarters to class Cs.
The patterns comprising class C; are drawn from a bivariate Normal distribu-
tion with zero mean and unit variance. The patterns forming class Co form an
annulus; the radii of the data are drawn from a normal distribution with a mean
of 4 and unit variance, and the angles uniformly distributed. The datasets vary
in size between 10 and 500 patterns. Figure 1 shows a graph of run-time as
a function of the number of training patterns for direct and fast approximate
leave-one-out cross-validation methods. Clearly the fast approximate method
is considerably faster and exhibits significantly better scaling properties than
the direct implementation. Let the relative approximation error be defined as
|7 — 7|2

IR

where 7 is a vector of leave-one-out residual errors computed via the direct
approach and 7 is the corresponding vector of residual errors resulting from
the proposed approximation. Figure 2 shows a graph of the mean relative
approximation error, as a function of the number of training patterns. The
approximation error is small for datasets of more than ~ 30 training patterns.
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Figure 1: Graph of run-time as a function of the number of training patterns
for leave-one-out cross-validation of kernel Fisher discriminant classifiers via
direct and fast approximate methods (mean of 20 trials).
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Figure 2: Graph of the mean relative approximation error as a function of the
number of training patterns for the proposed fast approximate leave-one-out
cross-validation method (mean of 20 trials).



4 Summary

In this paper we have generalised an existing algorithm for leave-one-out cross-
validation of multi-variate linear regression models (see e.g. [6]) to provide
an approximation to the leave-one-out error rate of kernel Fisher discriminant
classifiers. The proposed algorithm allows approximate leave-one-out cross-
validation of this class of model with a computational complexity of only O(¢3)
operations, instead of the O(¢*) of a direct approach. Furthermore, profiling
information reveals that, providing C ! is cached, the time taken to estimate
the leave-one-out error rate is considerably less than the time taken to train the
KFD classifier. As a result leave-one-out cross-validation becomes a practical
model selection criterion in far larger scale applications of KFD models.
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