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Abstract.

Model selection methods for kernel machines often seek to minimise an
upper bound on the leave-one-out cross-validation error. This paper de-
scribes an efficient algorithm for ezact leave-one-out cross-validation of
least-squares support vector machines, in both classification and regres-
sion settings. The proposed method exploits the considerable redundancy
in the family of systems of linear equations to be solved in explicit compu-
tation of the leave-one-out error. The efficiency of the proposed approach
is demonstrated using real-world and synthetic benchmark datasets.

1 Introduction

The generalisation properties of kernel models are typically governed by the
choice of kernel and a small number of kernel and regularisation parameters.
Finding the optimal values for these parameters, i.e. those minimising an ap-
propriate loss function on unseen data, is an activity known as model selection.
If the available data is sufficiently large, it is common practice to partition the
data into three sets; the training set is used to estimate the model parameters,
performance on the wvalidation set provides the criterion for model selection,
and the generalisation of the model estimated using the statistically pure test
set. In situations where little data is available cross-validation may be prefer-
able. First the available data is partitioned into S disjoint sets, a model is then
trained using each combination of S — 1 partitions and its performance esti-
mated over the remaining portion of the data. The cross-validation estimate of
the generalisation of the model is the mean of the test-partition performance
of the S models. The most extreme form of cross-validation, where S is equal
to the number of training patterns, is known as leave-one-out cross-validation.



Leave-one-out cross-validation provides a useful criterion for model selection
as it gives an almost unbiased estimate of the expected error on unseen data
[1]. In this paper we demonstrate an efficient algorithm for leave-one-out cross-
validation of the least-squares support vector machine for use in model selection
and comparison.

2 The Least Squares Support Vector Machine

Ridge regression [2] is a method from classical statistics that implements a
regularised form of least-squares regression. Given training data,
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ridge regression determines the parameter vector, w € R?, of a linear model,
f(x) =w -z + b, by minimising the objective function

£
1
Wi (w) = 3wl + 5 >~ (i — w- @~ b)°. M
i=1

The objective function used in ridge regression (1) corresponds to a form of
Tikhonov regularisation [3] of a sum-of-squares error metric, where v is a reg-
ularisation parameter controlling the bias-variance trade-off [4]. This is equiv-
alent to penalised maximum likelihood estimation of w, assuming the targets
have been corrupted by an independent and identically distributed (i.i.d.) sam-
ple from a Gaussian noise process, with zero mean and variance o2, i.e.

yi=w-z;+b+e, e~N(007).

A non-linear form of ridge regression [5-7], the least-squares support vec-
tor machine, can be obtained via the so-called “kernel trick”, whereby a lin-
ear ridge regression model is constructed in a high dimensional feature space,
F (¢p: X - F), induced by a non-linear kernel function defining the inner
product K(z,2') = ¢(z) - ¢(2'). The kernel function, £ : X x X — R may
be any positive definite “Mercer” kernel. The objective function minimised in
constructing a least-squares support vector machine is given by
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The representer theorem [8] indicates that the solution of an optimisation prob-
lem of this nature can be written in the form of an expansion involving training
patterns, i.e. w = Zle a;¢(x;). The output of the least-squares support vec-
tor machine is then given by the kernel expansion

¢
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It can easily be shown [5,6] that the optimal coefficients of this expansion are
given by the solution of a set of linear equations
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where Q2 = K +£’Y_II, K = [ku = K(wiawj)]f,jzla Yy = (%:M;---;W)T;
o = (()él,OéQ,...,Oég)T and 1 = (1,1,...,1)T.

3 Fast Exact Leave-One-Out Cross-Validation

In each iteration of the leave-one-out cross-validation procedure, a least squares
support vector machine is trained excluding a single training pattern. Clearly
this can be implemented by solving the system of linear equations (2), striking
out one row and the corresponding column, for example:
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To perform leave-one-out cross-validation, we must solve £ systems of /¢
linear equations in £ variables. The solution of a system of linear equations us-
ing Gauss-Jordan elimination requires O(£3) operations, so it would appear at
first glance that the leave-one-out cross-validation of the least-squares support
vector machine involves O(£*) operations. Fortunately there is a considerable
degree of redundancy between the systems of linear equations, and so faster
solutions are possible. Consider the first three steps of the Gauss-Jordan elim-
ination process for a matrix A:
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Clearly the results obtained from the it* step form a useful starting point for
solution of the systems of linear equations striking out any row between rows



i+ 1 and ¢ and the corresponding column. One can take advantage of this
redundancy in this family of systems of linear equations by caching of these
partial solutions from Gauss-Jordan elimination of the original matrix € (we
assume sufficient memory to store all partial solutions).

4 Simulation Results

For simplicity, the efficiency of the proposed fast exact leave-one-out cross-
validation algorithm is first assessed via a series of random datasets containing
between 20 and 400 training patterns, using a linear kernel K(z,z') = x -
x’, without regularisation (y — o0). Figure 1 shows a comparison of the
computational expense, as measured by the number of floating point operations
performed, of leave-one-out validation schemes based on standard and efficient
Gauss-Jordan elimination algorithms. The proposed algorithm is demonstrated
to be between 2.28 and 5.83 times faster than the standard approach, with the
improvement in speed increasing as the training set becomes larger.
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Figure 1: Comparison of the computational expense of leave-one-out validation
schemes based on standard and efficient Gauss-Jordan elimination.

The Pima Indian benchmark dataset [9] describes the effect of a variety of
physiological attributes on the occurrence of diabetes in a population of women
of Pima Indian descent living near Phoenix Arizona. The dataset defines a
classification problem, in which individuals are classified as diabetic or non-
diabetic given a vector containing 8 attributes thought to be relevant. The data
is comprised of a training set of 200 patterns and a test set of 332 patterns. A
least-squares support vector classification network was then trained, using an



anisotropic Gaussian radial basis function kernel,

K(z,z') = exp {Z o7 % (zi — $;)2} .

The values of the regularisation, v, and kernel, o, parameters were selected
so as to minimise the 10-fold cross-validation error over the training set. The
leave-one-out cross-validation error was then found, using both the standard
and efficient algorithms, to be 23%. The time taken to compute the leave-one-
out error using the standard approach was 63.1 seconds, and using the proposed
fast algorithm only 10.16 seconds, a factor of 5.86 times faster.

5 Discussion

In this paper we have introduced a fast exact algorithm for leave-one-out cross-
validation of least-squares support vector machines in a non-linear regression
setting. A similar approach is equally valid for least-squares support vector
machines in a classification setting, where the optimal values of the model
parameters are again found by solution of a system of linear equations. This
approach could also be adapted to provide an upper bound! on the leave-
one-out, error of the 2-norm formulation of the support vector machine [10],
where the optimal model parameters are given by the solution of the Karush-
Kuhn-Tucker (KKT) system for the set of support vectors [11]. We are also
investigating the redundancy involved in solution of families of positive-definite
systems of linear equations via the Cholesky method, for leave-one-out cross-
validation of kernel ridge regression models (essentially a least-squares support
vector machine without a bias term [5]).

6 Summary

An efficient algorithm for exact leave-one-out cross-validation of least-squares
support vector machine in a regression setting is introduced. The efficiency
of the proposed method is then demonstrated using real world and synthetic
benchmark dataset. The most important feature of the proposed algorithm is
that it is numerically equivalent to explicit computation of the leave-one-out
error, but is significantly faster.
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1Tt is assumed that the set of support vectors is unchanged during the leave-one-out
cross-validation procedure.
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