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Abstract.

A regularised kernel regression model is introduced for data characterised
by a heteroscedastic (input dependent variance) Gaussian noise process.
The proposed model provides more robust estimates of the conditional
mean than standard models and also confidence intervals (error bars) on
predictions. The benefits of the proposed model are demonstrated for
the task of non-linear prediction of episodes of poor air quality in urban
environments.

It is well known that a sum-of-squares error (SSE) metric corresponds to
maximum likelihood estimation for regression tasks where the targets are as-
sumed to have been corrupted by additive Gaussian noise with constant vari-
ance (i.e. a homoscedastic noise process) (e.g. [1]). The Least-Squares Support
Vector Machine [2], kernel ridge-regression [3,4] and Regularisation Machines
[5] form a family of closely related techniques that perform non-linear regression
using a linear model, constructed in a fixed feature space induced by a Mercer
kernel, minimising a regularised sum-of-squares criterion. In this paper, we
extend this family to include a formulation that is optimal for Gaussian noise
with input-dependent variance (i.e. a heteroscedastic noise process). Linear
models are constructed in a kernel induced feature space, estimating both the
conditional mean and variance of the target distribution, using a regularised
maximum likelihood criterion [1,6]). This results in both more robust esti-
mates of the conditional mean [2] and also a confidence interval on predictions
(i-e. error bars). In this study, we apply the proposed method for prediction of
episodes of poor air quality, in terms of both an estimate of the concentration
of a given pollutant and an estimate of the probability that the concentration
exceeds a given statutory threshold level.



1 Method

Suppose we are given a dataset D = {x;,y;}¢,, x; € X CR?, y; € R, where
the targets, y;, are assumed to be corrupted by an independent and identically
distributed (i.i.d.) sample drawn from a Gaussian noise process with a mean
of zero and input dependent variance, y; = u(x;) + €;, € ~ N(0,0(x;)). The
probability of observing target y;, given input vector x; is given by
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The negative log-likelihood of D can then be written (omitting constant terms)

as
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To model the data, we must estimate the functions u(x) and o(x). The con-
ditional mean is estimated by a linear model, u(z) = w* - ¢ (x) + b*, con-
structed in a fixed feature space, F* (¢ : X — F*). F is induced by a
positive definite “Mercer” kernel, K# : X x X — R, defining the inner prod-
uct KH(z,z') = ¢*(x) - ¢"(x'). The superscript u is used to denote entities
used to model the conditional mean p(x). The standard deviation is a strictly
positive quantity and so the logarithm of the standard deviation is estimated
by a second linear model, logo(x;) = w? - ¢? () + b7, similarly constructed
in a feature space F7 defined by Mercer kernel 7. A superscript o is used to
identify entities used to model the standard deviation, o(x). The parameters
of the model (w*,b*, w’ and b?) are determined by minimising the objective
function
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Clearly this corresponds to quadratic regularisation [7] of a maximum likeli-
hood cost function, where v#* and 7 are regularisation parameters, providing
independent control of the bias-variance trade-off [8] for the models of the con-
ditional mean and standard deviation. The representer theorem [9] suggests
that the optimal values of w* and w? can be written as expansions over train-
ing patterns, such that
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2 An Efficient Training Algorithm

The parameters, (a*,b”,a’,b%), of the conditional mean and standard de-
viation models can be found via an iterative re-weighted least squares (IRLS)
procedure [10], alternating updates of the mean and standard deviation models.



2.1 Updating the Model of the Conditional Mean

If o(x;), Vi € {1,2,...,£} are held constant, the optimal parameters of the
model of the conditional mean, (a*,b*), are given by the minimiser of the
objective function
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where (; ! = 2¢%(x;). This is equivalent to the objective function to be min-
imised in the weighted least-squares support vector machine [2], and so is min-
imised by the solution of the set of linear equations
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b, ...,af)T and D is a diagonal matrix with

where @ = (K" + D), K" = {kj; = K*(zi, z;)}
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2.2 Updating the Conditional Standard Deviation Model

If p(z;), Vi € {1,2,...,£} are held constant, the optimal parameters of the
model of the conditional standard deviation, (a”,b?), are given by the min-
imiser of the objective function
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where & = $[u(x;) — yi]? and z; = w7 - Pp(x;) + b7 = Zﬁ:l af K7 (x;, ;) +b7.

It is straightforward to obtain the gradient vector, V, and Hessian matrix,
H with respect to the vector of model parameters (a?,b”). The model of
the conditional standard deviation can then be updated via a simple Newton-
Raphson algorithm, i.e.

(@, 7)i41 = (a”,b7), —H'V. ©)

2.3 Convergence and Stability

The objective functions, L, L* and L?, can all be shown to constitute convex
optimisation problems (i.e. their respective Hessian matrices are positive semi-
definite), and therefore posess single, global minima. Furthermore, decreases
in the values of L* or L? during alternating steps of the training algorithm
produce corresponding reductions in L. Both p and o steps are guaranteed to
reduce L* and L7 respectively, unless the corresponding minima have already
been found. The stability of the training algorithm and convergence to the
global minimum of L are therefore assured.



3 Results
3.1 The Motorcycle Benchmark

The Motorcycle benchmark consists of a sequence of accelerometer readings
through time following a simulated motorcycle crash during an experiment to
determine the efficacy of crash helmets [11]. Figure 1(a) shows the output of a
heteroscedastic regularised kernel regression model for the Motorcycle dataset,
using a common Gaussian radial basis kernel for both conditional mean and
variance models,

Kt (z,z') = K7 (z,z') = exp {—A?|lz — z'||*} . (9)

where A = 13.1, v# = 2 x 107® and +* = 1. Note that the error bars are
appropriately small where the variance of the data is least. The use of a het-
eroscedastic noise model also penalises errors more harshly in low noise regions
of the data, leading to improved estimates of the conditional mean, for example
eliminating the unwarranted undulation in the output of a conventional least-
squares support vector machine, shown in figure 1(b), between ~ 3 — 12ms.
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Figure 1: Heteroscedastic (a) and homoscedastic (b) regularised kernel regres-
sion model of the Motorcycle benchmark dataset.

3.2 Predicting Episodes of Poor air Quality

There are many diverse social, healthcare and economic problems associated
with poor air quality. While government bodies have established threshold con-
centrations for a range of pollutants, the use of statistical modelling techniques
to predict episodes of poor air quality is problematic, firstly because episodes
of poor air quality are rare and on the decline due to a reduction in emis-
sions, but also because different end users have different costs associated with
false-positive and false-negative predictions. The output of a heteroscedastic
regularised kernel regression model provides a full description of the target
distribution describing the predicted level of a given concentration. Given a



vector, ¢, summarising current meteorological and emissions data, the model
provides not only a forecast of the most likely concentration, u(z), but also
of the probability that the observed concentration, y, exceeds a fixed thresh-
old level, Y. The latter is obtained via integration of the upper tail of the
predictive distribution,
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(initial studies indicate that a heteroscedastic Gaussian distribution provides a
reasonable approximation to the observed noise process). A single model can
then be used for analysis of air quality time-series data, without the need for
retraining to accommodate changes in threshold concentrations or misclassifi-
cation costs.

Table 1: Comparison of LS-SVM and heteroscedastic regularised kernel regres-
sion (HRKR) models for prediction of daily mean SO5 concentration in urban
Belfast.

| Statistic | HRKR | LS-SVM |
Root-Mean-Squared Error 14.92 15.81
Negative Log Likelihood 2313 517.8
Cross-Entropy 3.48 6.572

LS-SVM and heteroscedastic regularised kernel regression (HRKR) net-
works were trained to predict the daily mean concentration of sulphur dioxide
in urban Belfast, given inputs summarising the recent history of the SO; time-
series and current meteorological conditions. Data from the years 1993-1996
were used in training and the models evaluated on data from the year 1998. In
each case, the hyperparameters were determined via manual trial-and-error ex-
ploration of the search space. Table 1 shows a statistical comparison of LS-SVM
and HRKR models. The HRKR model provides more accurate estimates of the
conditional mean concentration, as illustrated by a lower root-mean-square er-
ror. The cross-entropy measure indicates that the HRKR also provides more
accurate estimates of the probability of an exceedance than the LS-SVM model.
It is well-known however that maximum likelihood estimates of the variance are
biased; if over-fitting occurs in estimation of the conditional mean, the appar-
ent noise density is unrealistically small. As a result the negative log-likelihood
of the HRKR model is inferior to that of the LS-SVM.

4 Summary

A heteroscedastic regularised kernel regression model is introduced, which
jointly estimates the conditional mean and variance of the target distribution.
The model is then applied to the task of predicting episodes of poor air quality



in an urban environment. The use of a heteroscedastic noise model is demon-
strated to provide improved estimates of the conditional mean of the target
distribution and useful, although biased, error bars on predictions.
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