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Abstract.

Baudat and Anouar [1] propose a simple greedy algorithm for estimation
of an approximate basis of the subspace spanned by a set of fixed vectors
embedded in a kernel induced feature space. The resulting set of basis
vectors can then be used to construct sparse kernel expansions for classi-
fication and regression tasks. In this paper we describe five algorithmic
improvements to the method of Baudat and Anouar, allowing the con-
struction of an approximate basis with a computational complexity that
is independent of the number of training patterns, depending only on the
number of basis vectors extracted.

Non-linear variants of many well known linear statistical methods have been
proposed, based on the so called “kernel trick” (for an overview, see e.g. Cris-
tianini and Shawe-Taylor [3]). The data, {z; € X}, are projected into a
fixed feature space F(¢p : X — F), induced by a positive definite “Mercer”
kernel defining the inner product K(z,z') = ¢(x) - ¢(x'). A linear method
can then be implemented in F, provided that it can be formulated such that
the data only appear in the form of inner products, giving rise to a non-linear
method in X, the space spanned by the data. The subspace of F spanned by
the data is fully specified by the kernel matrix K = [k;; = K(zx;, a;j)]f,jzl. As
a result, kernel methods can become computationally demanding as the size
of the data set grows large. Baudat and Anouar [1] suggest building a ker-
nel model using a small sub-set of the data forming an approximate basis for
the subspace of F populated by the data and provide a greedy algorithm for
identifying a near optimal set of basis vectors. In this paper we describe five
algorithmic improvements to the the existing method, resulting in a significant
reduction in computational complexity.

The normalised Euclidean distance between the image of a datum in feature
space, ¢(x;), and ¢g(x;), its optimal reconstruction using the set basis vectors



{¢p(x;) }ies, is given by
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This distance can be expressed in terms of inner products, and so via the
“kernel trick”,
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where Kss is a square sub-matrix of K, such that Kss = {kmn}m,nes and
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Kg; = (k,m-)TTnE s is a column vector of inner products. To form a basis, it is
sufficient to minimise the mean reconstruction error §; over all patterns in the
training set, i.e. maximise
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Starting with S = (), a basis is constructed in a greedy manner, adding the

training vector maximising J(S) at each iteration. The algorithm terminates
when K ss is no longer invertible, indicating that a basis has been identified.

1 An Efficient Algorithm

This section describes five improvements to the algorithm proposed by Baudat
and Anouar [1], providing a significant reduction in computational complexity.

1.1 Efficient Matrix Inversion

A significant proportion of the computational effort expended in determining a
basis is taken up by the repeated inversion of a sub-matrix of K defined by the
set of basis vectors, K ss. Fortunately at each stage an extra row and column
is added to a symmetric matrix for which the inverse is already known; this
means that the following block matrix inversion lemma can be applied,

Lemma 1 (Block Matrix Inversion) Given an invertible matriz A, a
column vector b and scalar ¢, the block matriz identity
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holds, where k = ¢ — b A™'b is the Schur complement of A.

Repeated O(n?®) matrix inversion operations are then replaced by an efficient
O(n?) alternative . To prevent numerical errors accumulating, Kgg can op-
tionally be evaluated directly at the end of each iteration. Note that k& can be
computed efficiently from the vector reconstruction errors cached during the
previous iteration.



1.2 Eliminating Candidate Basis Vectors

If the addition of a candidate vector, ¢(x;), to the existing set of basis vectors,
{¢p(x;) }ies, causes Kss to become singular, it can be safely eliminated from
the set of candidate basis vectors for subsequent iterations. In this case, ¢(x;) is
linearly dependent on the set of established basis vectors and so does not reduce
the reconstruction error for any pattern, regardless of any further vectors added
to S. The Schur complement (see Lemma 1) provides an efficient indication
that a candidate vector is linearly dependent on the existing basis vectors. The
second term, K E,K ssKs;, gives the squared norm of the projection of ¢(x;)
in the space spanned by the existing basis vectors {¢(x;)};cs and the first
term, k;;, is the squared norm of ¢(x;); thus the Schur complement is zero if
@(x;) is linearly dependent.

1.3 Efficient Computation of Mean Reconstruction Error

Any vector lying within the subspace defined by the current basis vectors (i.e.
the current basis vectors, and any candidate vector for which the Schur com-
plement (see Lemma 1) is sufficiently small), need not be included in the sum
defining J(S). This is because the reconstruction error for such patterns is
essentially zero, regardless of the addition of further basis vectors, and so the
corresponding terms of the summation need not be evaluated.

1.4 Stochastic Sampling of Candidate Basis Vectors

Rather than considering the entire set of candidate basis vector at each step,
we consider only a random subset of a fixed size.

Lemma 2 (Maximum of Random Variables) Denote by &, ..., &y, iden-
tically distributed independent random variables with the common cumulative
distribution function F(&). Then the cumulative distribution function of
& = maX;e(n & s (F(£))™ (Smola and Scholkopf [4]).

Thus a random selection of 59 candidates, with a probability of 0.95, contains
a vector with a mean reconstruction error within the lowest 5% of the entire
pool of candidate basis vectors (assuming that the mean relative reconstruction
errors are uniformly distributed over the range [0, 1]) [4].

1.5 Stochastic Approximation of J(S)

Following the modification described section 1.3, evaluation of the objective
function (1) has a computational complexity of O(Nn?), where N is the num-
ber of candidate basis vectors and n is the number of existing basis vectors.
However, if £ is large, the following ()(n?) approximation can be employed:

1 KL K \Kg;
J(S) Z Sitr ss 5_

|71 icT kii



where {¢(x;) }icT is a random subset of candidate basis vectors of a sufficiently
large (but fixed) size.

1.6 The Algorithm

The efficient feature vector selection algorithm can be stated formally as follows:

Algorithm 1 Efficient Feature Vector Selection

Inputs: K - the Gram matrix, K = [k;; = /C(a:,-,a:j]f’jzl
€ — threshold reconstruction error for candidate vectors

p — number of candidate vectors considered in each iteration

v — number of candidate vectors used to approximate J(S)

T — stopping criterion based on mean relative reconstruction error
N - stopping criterion based on maximum number of basis vectors

Method:

S:=40.
Ci={L,....0}
do
Let R % C, such that |R| = min(p, |C]).
random
Let T - C, such that |7| = min(v, |C]).
foreachr € R
S =Su{r}.

Invert K g s via block matrix inversion lemma, (Lemma 1).
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Tl = i
end
Find r € R such that J(SU {r}) = H'lea% JSu{r'}).
S =8Su{r}.

C:=C\ {c: c€eC, 6.(S) <e}
while |S| < N and (1 — J(S)) > 7 and C # 0.
Output: S.

2 Results

The standard and efficient feature vector selection algorithms (FVS and EFVS
respectively) were implemented in MATLAB, with vectorisation and MEX files
used where appropriate, making extensive use of profiling information. The re-
sults of a comparison of the FVS and EFVS algorithms over the Boston Housing
data set [2] are displayed in figure 1. As shown in figure 1 (a), reducing the num-
ber of candidate basis vectors considered during each iteration greatly reduces



the run time of the efficient feature vector selection algorithm. Figure 1 (b)
indicates that this is achieved without significantly reducing the quality of the
resulting set of basis vectors as measured by the mean relative reconstruction
error. Note even if all candidates are examined (p = 00), the efficient FVS algo-
rithm is still significantly faster than the conventional algorithm. Figure 1 (c)
and (d) indicates that a similar reduction in run-time can also be achieved by
reducing the number of candidate basis vectors used to estimate the objective
function, again without a significant sacrifice in mean relative reconstruction
error.

3 Summary

This paper describes an efficient algorithm for selecting a subset of the data
set forming a basis for the entire data set in a kernel induced feature space. A
sparse kernel machine can then be constructed using the set of basis vectors.
The proposed modifications reduce the computational complexity of the exist-
ing algorithm from O(¢?n?) to only O(n?), where £ is the number of training
patterns and n is the number of basis vectors extracted. Note that the run-time
of the algorithm depends only indirectly on the number of training patterns,
and so efficient feature vector selection enables non-sparse algorithms, such as
the Least-Squares Support Vector Machine [5], to be employed in large scale
applications.
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Figure 1: Comparison of standard and efficient feature vector selection algo-
rithms over the Boston Housing data set : (a) and (b) run time and mean
relative reconstruction error as a function of the number of basis vectors as p,
the number of candidates examined in each iteration, is varied; (c) and (d) run
time and mean relative reconstruction error as a function of the number of basis

vectors as v, the number of vectors used to estimate the objective function, is
varied (p = 59).



