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Abstract

The prediction of episodes of poor air quality using artificial neural networks is in-
vestigated, concentrating on selection of the most appropriate cost function used in
training. Different cost functions correspond to different distributional assumptions
regarding the data, the appropriate choice depends on whether a forecast of absolute
pollutant concentration or prediction of exceedence events is of principle importance.
The cost functions investigated correspond to logistic regression, homoscedastic
Gaussian (i.e. conventional sum-of-squares) regression and heteroscedastic Gaussian
regression. Both linear and non-linear neural network architectures are evaluated.
While the results presented relate to a dataset describing the daily time-series of the
concentration of surface level ozone (O3) in urban Berlin, the methods applied are
quite general and applicable to a wide range of pollutants and locations. The het-
eroscedastic Gaussian regression model outperforms the other non-linear methods
investigated, however there is little improvement resulting from the use of non-linear
rather than linear models. Of greater significance is the flexibility afforded by the
non-linear heteroscedastic Gaussian regression model for a range of potential end-
users, who may all have different answers to the question: “What is more important,
correctly predicting exceedences or avoiding false alarms?”.
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1 Introduction

In recent years, neural network models have been widely developed and applied

to atmospheric science problems in general (Gardner and Dorling, 1998) and

air quality problems in particular (Comrie, 1997; Gardner and Dorling, 1999a;

Gardner and Dorling, 1999b). Advantages of neural network based approaches

include the ability to simulate non-linear behaviour and to avoid the necessity

of making unnecessary and potentially incorrect assumptions regarding inter-

actions between model input variables. The APPETISE project (Grieg, 2000),

funded under the IST programme of the European Commission’s Framework

V programme, was conceived to comprehensively test the ability of neural

network models applied to air quality problems and this paper reports on an

informative subset of the findings of this project.

Episodes of elevated concentrations of air pollutants, which are thought to

be potentially damaging to health, are addressed in the European Air Qual-

ity Framework Directive and subsequent daughter directives. These directives

identify threshold concentrations and pollutant-specific periods over which

these concentrations occur which are thought to be associated with these

deleterious health effects. This paper specifically addresses how neural net-

work models perform in simulating pollutant concentrations, and importantly

prediction of exceedences of statutory threshold concentrations during these

episodes. A vital issue that has not been addressed in previous studies is that

for most end-users the costs associated with false-positive errors (i.e. false-

alarms) and false-negative errors (i.e. failing to predict the occurrence of an

observed exceedence) are unlikely to be equal, and furthermore are likely to

differ widely for different groups of end-users. The aim of this study is to

develop neural network models of air pollutant datasets that give accurate

predictions, but also give flexibility in accommodating unequal misclassifica-

tion costs.
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The meteorological conditions which can help drive the incidence of episodes

of poor air quality include low wind speeds and temperature inversions (poor

ventilation), solar radiation intensity (production of photochemical pollutants)

and external air temperature (related to pollutant emission rates from indus-

trial plant, heating systems and vehicular activity). Some of the meteorological

and pollutant emission variability is also, of course, captured to some extent by

simple temporal predictor variables such as “month of the year”, “day of the

week” and “time of day”. The neural network models described here therefore

combine input parameters describing the recent history of pollutant concentra-

tions, observed meteorological data and temporal information. In this paper

we inter-compare cost functions representing different distributional assump-

tions regarding the target data.

Neural networks provide a flexible, non-linear model relating these predictor

variables to pollutant concentrations. However, it has often been observed

(Bishop, 1995) that simple maximum likelihood estimates for the parame-

ters of a complex statistical model, such as a multi-layer perceptron neural

network, often lead to severe over-fitting of the training data. For practical

applications it is therefore vital to limit the complexity of the model to suit

the complexity of the learning problem defined by the data. The two most

commonly encountered approaches are known as formal regularisation and

structural stabilisation. The latter approach, in the case of the multi-layer

perceptron, seeks to determine the optimal number of hidden neurons and

synapses, either by pruning a large network and retraining or starting with a

simple model and adding resources while generalisation continues to improve

(Hassibi and Stork, 1993). Formal regularisation, on the other hand, incorpo-

rates a regularisation term into the cost function that seeks to penalise overly

complex models. In this study we adopt a Bayesian regularisation scheme due

to (Williams, 1995) that provides both formal regularisation and structural

stabilisation.
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2 Unequal Misclassification Costs

It is rare in practical applications of statistical pattern recognition algorithms,

including artificial neural networks, for the cost of false-positive and false-

negative misclassification errors to be the same. Consider, for example, a

medical screening test, where a patient is classified as suffering from a par-

ticular disease (a positive diagnosis) or being free of that disease (a negative

diagnosis) based on some set of physiological measurements. In this case, a

false-positive error, while understandably the source of some considerable anx-

iety for the patient, is relatively benign as the patient will be referred back

to the doctor for more sophisticated tests likely to reveal the error. On the

other hand, a false-negative error is potentially far more serious as the disease

may become more advanced before the error is noticed, putting the patient

at greater risk and also increasing the eventual expense of treatment. Ideally

the costs of false-positive and false-negative misclassification errors should be

factored into the design of the classifier.

In the case of a binary (two class) pattern recognition system, that gives as

an output the probability, p(~x), that the input pattern, ~x, belongs to class A

rather than class B, it is straight-forward to accommodate unequal misclassi-

fication costs. The input pattern is normally assigned to class A if p(~x) ≥ τ

and to B if p(~x) < τ ; if the misclassification costs are equal then τ = 0.5.

It is easy to show that the use of unequal misclassification costs corresponds

to a threshold given by τ = cfp/(cfn + cfp), where cfn and cfp are the costs

associated with false-negative and false-positive errors respectively.

In the case of statistical prediction of episodes of poor air quality, the situation

is complicated by the fact that different end-users are likely to have different,

possibly contradictory, views on the correct set of misclassification costs. For

instance a hospital manager may wish to balance the cost of additional staffing

during episodes of poor air quality to cope with an influx of patients expe-
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riencing breathing difficulties against the cost of more expensive treatment

of seriously ill patients if immediate care is not available. Alternatively a city

council may act to close the city centre to traffic on a day where an exceedence

of a statutory threshold is predicted, perhaps in order to avoid being penalised

by a higher level of government, but can only achieve this at the expense of a

reduction in city centre trade. While, in these hypothetical scenarios, the costs

have been formulated in financial terms, it is not always possible to derive the

true misclassification costs via a rigorous numerical procedure and one must

instead rely on expert opinion. The important concept presented here is that

if an end-user is to act on a prediction made by an air pollution model, it is

vital to ensure that the appropriate misclassification costs are applied, firstly

to minimise the expected loss, but also to ensure that any action or inaction

can be properly justified.

3 Neural Models of Air Pollution Time-Series

In this paper, we inter-compare five approaches to predicting episodes of poor

air quality using artificial neural networks and generalised linear models. Three

different cost functions are evaluated corresponding to logistic regression, ho-

moscedastic Gaussian regression and heteroscedastic Gaussian regression. Ho-

moscedasticity implies that the variance of the target distribution is indepen-

dent of the explanatory variables, a common assumption that is not always

justified. For instance, one could argue that the variability in ozone concen-

trations is higher in Summer than during Winter months. One possible justifi-

cation for this assumption would be the observation that the absolute amount

of direct sunlight reaching the Earth’s surface, a factor directly influencing

ozone concentrations, is not only higher in Summer but also more variable.

The Winter months, at least in the United Kindom, are predominantly over-

cast, whereas during Summer one observes an alternating pattern of bright

and cloudy spells. In this situation, it would be more appropriate to employ
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a heteroscedastic distribution, where both the mean and variance of the tar-

get distribution are modelled as a function of the explanatory variables, in

this case time of year. In this study we have used Generalised Linear Models

(GLMs) (Nelder and Wedderburn, 1972) and Multi-Layer Perceptron (MLP)

neural networks, although the methods used are equally applicable to Radial

Basis Function neural networks (Bishop, 1995). In the remainder of this paper,

we assume that the reader is familiar with these models and highlight only

the specific features required to accommodate different cost functions used in

training.

3.1 Logistic Regression

Logistic regression provides perhaps the most straight-forward approach to

predicting episodes of poor air quality. Assuming the target patterns, ti, rep-

resent an independent and identically distributed (i.i.d.) sample drawn from

a Bernoulli distribution (ti = 1 indicates an exceedence, ti = 0 indicates the

absence of an exceedence), conditioned on the corresponding input vectors,

~xi, the likelihood of the training data D, given a vector of model parameters

~w, is given by

p(D | ~w) =
n

∏

i=1

(yi)
ti (1− yi)

1−ti , (1)

where yi is the output of the model for the i
th observation. Taking the negative

logarithm gives rise to the familiar cross-entropy cost function (Bishop, 1995),

ED = −
n

∑

i=1

{ti log yi + (1− ti) log(1− yi)} . (2)

The output of a linear model, ηi = ~w~xi is related to the probability of an

exceedence via the logit link function:

ηi = logit(yi) ⇔ yi =
eηi

1 + eηi

.

Maximum likelihood estimates for these parameter values are found using an

iteratively weighted least squares algorithm (Nelder and Wedderburn, 1972).
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For non-linear logistic regression models implemented using multi-layer per-

ceptron networks, the output layer activation function is chosen to be the

sigmoidal logistic function, g(a) = 1/(1 + e−a), restricting the output of the

model to lie in the range (0, 1). Under these conditions the output of the model

provides a maximum likelihood estimate of the Bayesian a-posteriori proba-

bility of an exceedence (Hopfield, 1987). Note the logistic regression models

do not provide an estimate of the concentration of a given pollutant, but only

the probability that this concentration exceeds a predetermined threshold.

3.2 Homoscedastic Gaussian Regression

The use of a sum-of-squares error (SSE) cost function (3) corresponds to max-

imum likelihood estimation of the conditional mean of the target distribution,

assuming a homoscedastic Gaussian noise process. The assumption of constant

variance simplifies the cost-function, giving

ED =
N

∑

i=1

(yi − ti)
2 (3)

For linear sum-of-squares regression, where the output of the model is given

by yi = ~w~xi, the optimal parameter values are found directly by solving the

well-known Normal equations (Weisberg, 1985). For non-linear models im-

plemented using neural networks, there is a single output unit with a linear

activation function g(a) = a. The output of the model can be regarded as

specifying a distribution for the predicted pollutant concentration, known as

the predictive distribution, in this case a Gaussian distribution centered on

the conditional mean given by the output of the model, yi, with variance given

by the usual maximum likelihood estimate,

σ2 =
1

N

N
∑

i=1

(yi − ti)
2.

The probability of an exceedence is then given by the integral of the predictive

distribution above the fixed exceedence threshold. This is illustrated by Figure
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1, where the probability of an exceedence is given by the area of the shaded

region. An episode of poor air quality is then predicted should this probability

exceed a fixed threshold, as described in section 2.

3.3 Heteroscedastic Regression

A heteroscedastic Gaussian regression model relaxes the strong assumption

that the noise process is of constant variance (i.e. independent of the input

pattern ~xi), and so attempts to estimate both the conditional mean and con-

ditional variance of the target distribution (Nix and Weigand, 1995; Williams,

1996), providing a more flexible and potentially realistic model. For a Gaus-

sian noise process, the network then has two output units, yµi estimating the

conditional mean of the target distribution and yσi estimating the conditional

standard deviation. The negative logarithm of the likelihood of the data is

then given by

− log p(D | ~w) =
1

2

N
∑

i=1

{

[ti − yµi ]
2

(yσi )
2
+ log(yσi )

2 + log 2π

}

, (4)

which can be used to form a maximum likelihood cost function as before.

Again, the probability of an exceedence is given by the integral of the predictive

distribution above the exceedence threshold, except that the variance is now

also estimated by the model.

3.4 Linear and Non-linear Models

A generalised linear model can be considered as a special case of the multi-layer

perceptron neural networks, discarding the layer of hidden units. A failure of

the non-linear model to outperform its linear counterpart could be due to the

data having a linear or nearly linear structure, or to the non-linear networks

being poorly trained. Linear models are therefore used to test the assumption

that a non-linear model is required for accurate prediction of pollutant levels.
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4 Results

The dataset used to illustrate the use of different cost functions describes

surface-level ozone (O3) concentrations for the Marienfelde-Schichauweg mon-

itoring station in urban Berlin. The monitoring technique used for O3 is UV

absorption. An exceedence is defined as an occurrence of the daily maximum of

the 8 hour moving average exceeding a threshold concentration of 120µg/m3.

A variety of variables are used as inputs into the models, and are listed in

table 1. Using O3 data from previous days allows the persistence of O3 in the

atmosphere to be taken into account. The temporal inputs allow for general

patterns in time, in particular “day of the week” can be considered a weak sur-

rogate variable for precursor traffic emissions data, and “time index” allows for

non-stationary modelling of the data. The choice of meteorological variables

used was guided by expert knowledge of the domain from the provider of the

datset (Schlink, 2001). Note the the use of a Bayesian regularisation scheme

with a Laplace prior in training the multi-layer perceptron models means that

redundant inputs are likely to be suppressed if not entirely pruned from the

network (Williams, 1995).

The data originally existed in the form of hourly readings, covering the pe-

riod 1997-2000. Five models were evaluated: generalised linear models using

logistic regression and homoscedastic Gaussian regression cost functions (de-

noted by GLM-LR and GLM-HoGR respectively) and multi-layer perceptron

models using logistic regression, homoscedastic Gaussian regression and het-

eroscedastic Gaussain regression cost functions (MLP-LR, MLP-HoGR and

MLP-HeGR respectively). A simple cross validation procedure was used in

order to obtain a robust estimate of true generalisation ability of each model

(Stone, 1974). The available data were divided into segments according to

year. Four identical models were then trained using different permutations of

three of the four segments of data and tested on the unused segment. The

test statistics quoted in this section are then the arithmetic means of those
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statistics evaluated over the test segment for each model.

A plot of the true daily time series is given in figure 2 along with the fitted

predictions from the GLM-HoGR (simplest) and MLP-HeGR (most sophisti-

cated) models. In order to avoid over-complicating the figure the outputs of

the other models are not included, and only the second 100 days of the year

2000 are given, containing 27 of the 31 observed exceedences for that year.

Both the MLP-HeGR and the GLM-HoGR fit the observed data well, with

more than half of the exceedences correctly identified.

4.1 Log-likelihood Analysis

Usually the global fit of a model is formally measured by using the root mean

square error (RMSE) or equivalently the sum-of-squared error (SSE) or even

the mean absolute error (MAE). These metrics provide an indication of the

agreement between the true time series and the mode of the predictive distri-

bution, but does not provide an indication of the suitability of the statistical

assumptions made, such as whether the data is heteroscedastic in nature. The

global performance measure used here is the log-likelihood, as this allows a fair

and direct comparison of models based on different distributional assump-

tions on a common scale. As the homo- and heteroscedastic Gaussian regres-

sion models also provide an estimate of the probability of an exceedence, the

log-likelihood for both the occurrence of an exceedence and the predicted pol-

lutant concentration can be computed for the GLM-HoGR, MLP-HoGR and

MLP-HeGR models. For either the prediction or classification problem, direct

comparison of the log-likelihoods is possible: the model with the higher log-

likelihood is “more likely” to have generated the observed data, and therefore

can be considered superior assuming equal model complexity. To make al-

lowances in comparing simple models to more complicated models, the Akaike

Information Criterion (AIC) (Akaike, 1973) is often used, which penalises the

log-likelihood of models with a greater number of parameters. However, this
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method depends on all models being trained to a unique minimum of the

cost function (the negative log-likelihood), which is not appropriate for the

multi-layer perceptron networks considered here, as the training algorithm

can only be guaranteed to converge to a local minimum of the cost function.

The log-likelihood statistics for the O3 dataset are given in table 2.

For the task of predicting exceedences of the statutory threshold, the logis-

tic regression models out-perform the other models. The performance of the

MLP-HeGR model, being the most sophisticated, is somewhat disappoint-

ing. This can be explained by recalling that maximum likelihood estimates of

variance-like quantities are known to be biased (Bishop, 1995). If the model

of the conditional mean over-fits the data, the apparent variance of the noise

process will be reduced, and so the predicted variance will often be optimisti-

cally small. Hence, on rare occasions an overly-confident prediction is made

(i.e. with very small variance) which fits poorly with the observed data, dis-

proportionately deflating the log-likelihood for both the classification and the

prediction problems. If we consider only the predicted mean from the MLP-

HeGR model, and estimate the (unbiased but homoscedastic) variance using

the formula:

σ̂2 =
1

N

N
∑

i=1

(yi − ti)
2,

we get the adjusted log-likelihood values shown in parentheses in table 2. The

comparison of log-likelihoods now corresponds to a comparison of the root-

mean-squared-error for the task of predicting pollutant concentrations. The

MLP-HeGR model now compares well with the logistic regression models for

the classification problem, and is even more favourably compared with the

other Gaussian regression models for the concentration prediction task. This

suggests that the MLP-HeGR model is superior in predicting the conditional

mean of the distribution of pollutant concentrations, due to the assumption of

a heteroscedastic noise process, although some procedure for avoiding overly

precise predictions may be beneficial.

It is interesting to note the similarity in performance of the GLM-HoGR and
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the MLP-HoGR model, and also the MLP-LR and GLM-LR models. This

suggests that the data is essentially linear in structure with perhaps only

a weak non-linear component. This agrees with a preliminary non-linearity

detection study of the O3 data (Foxall et al., 2001), although the physics of

O3 in the atmosphere (Nunnari et al., 1998) suggests non-linear models would

be more appropriate.

4.2 Exceedence Summary

Specific health risks associated with air pollution can occur when key air qual-

ity thresholds are exceeded, and so in air pollution modelling it can be argued

that it is most important to accurately predict these exceedences. Table 3

gives a summary of the 8 hour average exceedence predicted by each model.

There were 108 exceedences in the O3 dataset covering the period 1997–2000.

The definition of the “best” classifier depends upon the ratio of false-positive

to false-negative costs deemed appropriate for a given end-user application.

In this instance, relative importance of ensuring the prediction of exceedences

or the avoidance of false alarms. This approach allows individual air quality

managers to optimise this trade-off to suit their own area of interest. Given a

50 : 50 ratio of misclassification costs, the MLP-HoGR model correctly pre-

dicts the most exceedences (72) but at the price of an increased number of

false alarms (27), although the GLM-HoGR model has a higher false alarm

percentage. The MLP-HeGR model has the fewest false alarms and a “com-

petitive” number of correctly predicted exceedences, and so is likely to be the

preferred classifier for a range of misclassification costs.

4.3 McNemar’s Test

Given two classifiers A and B, which classify each test pattern either correctly

or incorrectly, McNemar’s test (McNemar, 1947) decides whether the propor-
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tion of times that A is correct and B is incorrect is essentially the same as

the proportion of patterns for which A is incorrect and B is correct. Table

4 gives the probabilities of the paired classifiers being essentially the same

for each of the possible pairings. The lower triangle of the table indicates the

better classifier according to this system, measured by the total number of

misclassifications. Table 4 shows here that the MLP-HeGR model is superior

to all other models, although none of the model differences are even close to

being statistically significant. All of the non-linear models outperform the two

linear models. Clearly McNemar’s test in its current form is not particularly

informative unless it is known that there are equal misclassification costs for

false-negative and false-positive errors.

4.4 ROC Curves

For most “interesting” classification problems, it is difficult if not impossi-

ble to find a classifier which will classify every future pattern correctly. One

therefore has to choose a classifier which keeps the misclassifications to a min-

imum. Of course, there are two different possible types of misclassification –

false-positives and false-negatives, and often the act of altering a classifica-

tion system so that one type of error is reduced increases the probability of

the other type of error. The Receiver Operating Characteristic (ROC) curve

graphically displays the trade-off between false-negative (1− true-positive) and

false-positive rates obtained by varying the classification criteria – in this case,

the probability threshold at which an exceedence is predicted (which depends

on the most appropriate ratio of misclassification costs). The area under the

ROC curve gives the effectiveness of the classifier, assuming nothing is known

about the optimal operational ratio of misclassification costs, the closer the

area to unity the better the classifier (Bradley, 1997; Adams and Hand, 1999).

Table 5 gives the areas under the ROC curves for each model. Here the MLP-

HeGR model again performs best, just ahead of the two logistic regression
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models, the two homoscedastic Gaussian regression techniques providing the

worst performance.

5 A Web-based Demonstrator

The key focus of the research presented here is on the construction of statis-

tical models of air quality datasets that can be used to predict episodes of

poor air quality, such that the end-users’ estimates of the true misclassifica-

tion costs are taken into account. Unfortunately it is often difficult for end

users to express the relative importance of false-positive and false-negative

misclassification errors numerically. We have therefore constructed a web-

based demonstrator system for our best model (MLP-HeGR), illustrating

the effects of changing the ratio of misclassification costs on the predictions

made by a statistical classifier. This allows a potential end-user to determine

the impact on their own sphere of interest of predictions made using dif-

ferent sets of misclassification costs. The demonstrator is provided in the

form of a Java applet, shown in figure 3, and is accessible via the URL

http::/theoval.sys.uea.ac.uk/∼gcc/projects/appetise/Berlin S02.html .

The demonstrator incorporates a model used to predict the concentration

of sulphur dioxide in urban Berlin, using an MLP-HeGR model (demonstra-

tors for other pollutants, including O3, are under development). The top panel

displays the probability of an exceedence predicted by the model, the lower

panel displays the observed S02 concentration and the conditional mean and

±1 standard deviation error bars, the horizontal line giving the statutory

threshold concentration. The slider bar at the bottom of the applet allows the

user to vary the ratio of misclassification costs, which affects the number of

false-positive and false-negative errors made by the model. We hope that this

will prove a useful tool for prospective end-users, helping them to consider

quantitatively the effects of misclassification costs for their own application.
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6 Summary

The multi-layer perceptron heteroscedastic Gaussian regression (MLP-HeGR)

model provides the best estimate of the conditional mean of the concentration

of O3 and the best predictor of exceedences regardless of misclassification costs

of the models investigated. It should be noted that the models described in

detail here here contributed a rigorous intercomparison of a wide variety of

statistical models for the task of predicting ground level ozone in a range of

European locations, and were found to be competitive (Schlink et al., 2002).

Unfortunately the variance estimated by this model is sometimes optimisti-

cally low, leading to an inflated likelihood statistic. However it is clearly worth-

while pursuing models incorporating more complex distributional assumptions

as this may lead to both more accurate models for forecast purposes, but also

a greater understanding and quantification of the physical processes giving

rise to poor air quality (e.g. a strong indication that in this case the noise

process is indeed heteroscedastic).

A key advantage of the Gaussian regression models is that they can be doubly

calibrated; not only is it possible to determine the probability that a pollutant

exceeds a fixed threshold, these models can still be used following a change in

threshold level, due perhaps to the introduction of more stringent legislation.

However, the assumption of constant variance would appear to be inappro-

priate for the datasets considered, leading to the two homoscedastic Gaussian

regression techniques (GLM-HoGR and MLP-HoGR), providing poor predic-

tions of the probability of an exceedence. When misclassification costs are not

equal these two models will provide a relatively poor warning system. The

MLP-HeGR model however, with the more flexible heteroscedastic variance

model, can give both accurate predictions of exceedence probabilities and ac-

curate predictions of pollutant concentrations, and so is to be preferred over

the other models considered.
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Table 1
Input variables. Round brackets (·) refer to time delay (in days) of input relative
to the prediction horizon, the numbers in square brackets [·] represent the hourly
data used to form averages etc. Defaults are current day (t − 0) day and all hours
[1− 24] respectively.

Category Input variable

Pollutant

mean O3(t− 2) max O3(t− 2)

mean O3[1−18](t− 1) max O3[1−18](t− 1)

mean NOx[1−18](t− 1) max NOx[1−18](t− 1)

Temporal
sine of Julian Day cosine of Julian Day

day index day of the week

Meteorological

mean temperature max temperature

mean global radiation mean humidity

mean wind speed[7−10] mean wind speed[15−19]

mean wind direction mean radiation balance
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Table 2
Log-likelihood for O3 models, numbers in brackets (·) refer to values obtained using a
homoscedastic variance structure with the MLP-HeGR model (see text for details).

Model
log-likelihood

for occurrence
Rank

log-likelihood

for prediction
Rank

GLM-LR -155.73 2 (3) N/A N/A

MLP-LR -154.88 1 (1) N/A N/A

GLM-HoGR -169.30 4 (4) -5807.91 3 (3)

MLP-HoGR -172.61 5 (5) -5748.93 2 (2)

MLP-HeGR -158.37 (-155.01) 3 (2) -5672.10 (-5619.90) 1 (1)

Table 3
Summary of the prediction of threshold exceedences by model type.

Model
observed

exceedences

predicted

exceedences

number correctly

predicted

number of

false alarms

GLM-LR 108 90 66 (61.1%) 24 (26.7%)

MLP-LR 108 91 68 (63.0%) 23 (25.3%)

GLM-HoGR 108 85 60 (55.6%) 25 (29.4%)

MLP-HoGR 108 99 72 (66.7%) 27 (27.3%)

MLP-HeGR 108 86 66 (61.1%) 20 (23.3%)

Table 4
Outcome of McNemar’s test for the statistical significance of differences in the per-
formance of classification models.

Model GLM-LR MLP-LR GLM-HoGR MLP-HoGR MLP-HeGR

GLM-LR 1 0.7003 0.4008 0.7423 0.5563

MLP-LR MLP-LR 1 0.1547 1.0000 1.0000

GLM-HoGR GLM-LR MLP-LR 1 0.1748 0.1273

MLP-HoGR MLP-HoGR tie MLP-HoGR 1 1.0000

MLP-HeGR MLP-HeGR MLP-HeGR MLP-HeGR MLP-HeGR 1
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Table 5
Area under the ROC curve for O3 prediction models.

Model Area under ROC Rank

GLP-LR 0.9741 2

MLP-LR 0.9724 3

GLM-HoGR 0.9661 5

MLP-HoGR 0.9704 4

MLP-HeGR 0.9762 1
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Fig. 1. Predictive distribution given by a Gaussain regression model, the shaded
area represents the probability of an exceedence of a fixed threshold.
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Fig. 2. True time-series and predicted concentrations given by MLP-HeGR and
GLM-HoGR models for the second 100 days of 2000 for the Berlin surface-level O3

dataset.

Fig. 3. Java applet demonstrating the trade-off be-
tween false-positive and false-negative misclassification costs
(http::/theoval.sys.uea.ac.uk/∼gcc/projects/appetise/Berlin S02.html ).
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