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Abstract

Multinomial logistic regression provides the standard gised maximum-

likelihood solution to multi-class pattern recognitioroptems. More recently,
the development of sparse multinomial logistic regressimuels has found ap-
plication in text processing and microarray classificatiwhere explicit identifi-

cation of the most informative features is of value. In thigoer, we propose a
sparse multinomial logistic regression method, in whioh $parsity arises from
the use of a Laplace prior, but where the usual regularisgiErameter is inte-
grated out analytically. Evaluation over a range of benatnaatasets reveals
this approach results in similar generalisation perforogato that obtained using
cross-validation, but at greatly reduced computationpkese.

1 Introduction

Multinomial logistic and probit regression are perhapsdlassic statistical methods for multi-class
pattern recognition problems (for a detailed introductisee e.g. [1, 2]). The output of a multino-
mial logistic regression model can be interpreted as-gosterioriestimate of the probability that
a pattern belongs to each oflisjoint classes. The probabilistic nature of the multimartogistic
regression model affords many practical advantages, ssitheaability to set rejection thresholds
[3], to accommodate unequal relative class frequenciekértraining set and in operation [4], or
to apply an appropriate loss matrix in making predictiore timinimise the expected risk [5]. As
a result, these models have been adopted in a diverse ramgplidations, including cancer clas-
sification [6, 7], text categorisation [8], analysis of DNAning sites [9] and call routing. More
recently, the focus of research has been on methods forimglsparsity in (multinomial) logistic
or probit regression models. In some applications, thetifleation of salient input features is of
itself a valuable activity; for instance in cancer classifiean from micro-array gene expression data,
the identification obiomarkergenes, the pattern of expression of which is diagnostic afraqular
form of cancer, may provide insight into the aetiology of tlemdition. In other applications, these
methods are used to select a small number of basis functidost a compact non-parametric clas-
sifier, from a set that may contain many thousands of cargidaictions. In this case the sparsity
is desirable for the purposes of computational expedieatlyer than as an aid to understanding the
data.



A variety of methods have been explored that aim to introdyoaesity in non-parametric regression
models through the incorporation of a penalty or regulgigseterm within the training criterion. In
the context of least-squares regression using Radial Basistion (RBF) networks, Orr [10], pro-
poses the use of local regularisation, in which a weightgieegularisation term is used with distinct
regularisation parameters for each weight. The optinvsatif the Generalised Cross-Validation
(GCV) score typically leads to the regularisation paramsefer redundant basis functions achiev-
ing very high values, allowing them to be identified and paifrem the network (c.f. [11, 12]).
The computational efficiency of this approach can be furitmproved via the use of Recursive Or-
thogonal Least Squares (ROLS). The relevance vector ma¢RviM) [13] implements a form of
Bayesian automatic relevance determination (ARD), usiegmarable Gaussian prior. In this case,
the regularisation parameter for each weight is adjusteasgo maximise the marginal likelihood,
also known as the Bayesianidencdor the model. An efficient component-wise training alglomit

is given in [14]. An alternative approach, known as the LA%8], seeks to minimise the negative
log-likelihood of the sample, subject to an upper bound @ ghm of the absolute value of the
weights (see also [16] for a practical training proceduiid)is strategy is equivalent to the use of a
Laplace prior over the model parameters [17], which has lognonstrated to control over-fitting
and induce sparsity in the weights of multi-layer perceptnetworks [18]. The equivalence of the
Laplace prior and a separable Gaussian prior (with apprigchoice of regularisation parameters)
has been established by Grandvalet [11, 12], unifying te&s@ds of research.

In this paper, we demonstrate that, in the case of the Lagleoe the regularisation parameters
can be integrated out analytically, obviating the need fégraythy cross-validation based model
selection stage. The resulting sparse multinomial logiggression algorithm with Bayesian regu-
larisation (SBMLR) is then fully automated and, having atgr requirements that scale only linearly
with the number of model parameters, is well suited to reddyi large-scale applications. The re-
mainder of this paper is set out as follows: The sparse nuutiial logistic regression procedure
with Bayesian regularisation is presented in Section 2. {Jioposed algorithm is then evaluated
against competing approaches over a range of benchmarkrgagsroblems in Section 3. Finally,
the work is summarised in Section 5 and conclusion drawn.

2 Method

LetD = {(:c”,t")}f;:1 represent the training sample, whare ¢ X C R is the vector of input

features for the'" example, and™ € 7 = {t|t € {0,1}°, |||, = 1} is the corresponding vector

of desired outputs, using the usual 1eafoding scheme. Multinomial logistic regression conssuct
a generalised linear model [1] withsaftmaxinverse link function [19], allowing the outputs to be
interpreted as-posterioriestimates of the probabilities of class membership,
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Assuming thatD represents an i.i.d. sample from a conditional multinordiatribution, then the
negative log-likelihood, used as a measure of the datatndafi be written as,
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The parametersw of the multinomial logistic regression model are given bg thinimiser of a
penalised maximum-likelihood training criterion,
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and« is a regularisation parameter [20] controlling the biagasece trade-off [21]. At a minima of
L, the partial derivatives of with respect to the model parameters will be uniformly zgiging

8ED 8E’D
(’9wij awij

<a if |wij| =0.

=a if|w; | >0  and ‘




This implies that if the sensitivity of the negative logédikhood with respect to a model parameter,
wy;, falls belowea, then the value of that parameter will be set exactly to zembthe corresponding
input feature can be pruned from the model.

2.1 Eliminating the Regularisation Parameters

Minimisation of (2) has a straight-forward Bayesian intetation; the posterior distribution fap,
the parameters of the model given by (1), can be written as

p(w|D) x P(D|w)P(w).

L is then, up to an additive constant, the negative logariththeposterior density. The prior over
model parametersy, is then given by a separable Laplace distribution
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whereW is the number of active (non-zero) model parameters. A gabaevfor the regularisation
parameteky can be estimated, within a Bayesian framework, by maxirgisiie evidenceg22] or
alternatively it may be integrated out analytically [17].2Here we take the latter approach, where

the prior distribution over model parameters is given bygiralising overa,

p(w) = / p(wla)p(a)da.

As « is a scale parameter, an appropriate ignorance prior isxgiyethe improper Jeffrey’s prior,
p(a) < 1/, corresponding to a uniform prior ovésg «. Substituting equation (3) and noting that
« is strictly positive,

1 o _
p(w) = 27/ "V exp{—aFEy}da.
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Using the Gamma integraf,~ 2" ~'e~+*dx = % [24, equation 3.384], we obtain

1 (W
p(w)=2Wé%) = —logp(w) o« Wlog Eyy,

giving a revised optimisation criterion for sparse logistgression with Bayesian regularisation,
M = Ep + W log Eyy, 4

in which the regularisation parameter has been elimindtedurther details and theoretical justi-
fication, see [17]. Note that we integrate out the reguléiosgparameter and optimise the model
parameters, which is unusual in that most Bayesian appesachich as the relevance vector ma-
chine [13] optimise the regularisation parameters andyiatte over the weights.

2.1.1 Practical Implementation

The training criterion incorporating a fully Bayesian régyisation term can be minimised via a
simple modification of existing cyclic co-ordinate descalgorithms for sparse regression using a
Laplace prior (e.g. [25, 26]). Differentiating the origlrend modified training criteria, (2) and (4)
respectively, we have that

VL =VEp+aVEy and VM =VEp+aVEy

where W
- 1
/o= W ;:1 |wil. ®)

From a gradient descent perspective, minimisidgeffectively becomes equivalent to minimising
L, assuming that the regularisation parameters continuously updated according to (5) following
every change in the vector of model parametarg17]. This requires only a very minor modifica-
tion of the existing training algorithm, whilst eliminagrthe only training parameter and hence the
need for a model selection procedure in fitting the model.



2.1.2 Equivalence of Marginalisation and Optimisation unetr the Evidence Framework

Williams [17] notes that, at least in the case of the Laplag®@ pgntegrating out the regularisation pa-
rameter analytically is equivalent to its optimisation enthe evidence framework of MacKay [22].
The argument provided by Williams can be summarised asvistiorhe evidence framework sets
the value of the regularisation parameter so as to optirhisenarginal likelihood,

P(D) = / P(D}w)P(w)dw,

also known as thevidenceor the model. The Bayesian interpretation of the reguéatisbjective
function gives,

P(D) = % /exp{—L} dw,

whereZyy, is a normalising constant for the prior over the model patanse for the Laplace prior,
Zyw = (2/a). Inthe case of multinomial logistic regressidiy represents the negative logarithm
of a normalised distribution, and so the corresponding mtisimg constant for the data misfit term
is redundant. Unfortunately this integral is analyticalyractable, and so we adopt the Laplace
approximation, corresponding to a Gaussian posterioriigion for the model parameters, centred
on their most probable valuey™F,

L(w) = L(w™?) + %(w —wMT A(w — M)
whereA = VV L is the Hessian of the regularised objective function. Tlgelariser corresponding
to the Laplace prior is locally a hyper-plane, and so doescoatribute to the Hessian and so
A = VVEp. The negative logarithm of the evidence can then be writsgn a

1
—log P(D) = Ep + aEWw + B log |A| + log Zyy + constant.

Setting the derivative of the evidence with respect to zero, gives rise to a simple update rule for
the regularisation parameter,
1 1 &
a - w Z |wjl,
j=1

which is equivalent to the update rule obtained using thegirdte-out approach. Maximising the

evidence for the model also provides a convenient means éaolehrselection. Using the Laplace

approximation, evidence for a multinomial logistic regriesm model under the proposed Bayesian
regularisation scheme is given by

(W)

1
—log{D} = Ep + Wlog Eyy — log {QW} + 3 log | A| + constant

whereA = VV L.

2.2 A Simple but Efficient Training Algorithm

In this study, we adopt a simplified version of the efficientnpmnent-wise training algorithm of
Shevade and Keerthi [25], adapted for multinomial, rathentbinomial, logistic regression. The
principal advantage of a component-wise optimisation rtigm is that the Hessian matrix is not
required, but only the first and second partial derivativethe regularised training criterion. The
first partial derivatives of the data mis-fit term are given by

C
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Similarly, the second partial derivatives are given by,
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The Laplace regulariser is locally a hyperplane, with thegnitade of the gradient given by the
regularisation parametet,

OaBy = sign {w;; } and %
6‘w,;j =58 * 8’(02

]

=0.

The partial derivatives of the regularisation term are refirced at the origin, and so we define the
effectivegradient of the regularised loss function as follows:
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Note that the value of a weight may be stable at zero if thevdtive of the regularisation term
dominates the derivative of the data misfit. The parametetseomodel may then be optimised,
using Newton’s method, i.e.

OFEp
awij
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Any step that causes a change of sign in a model parametemisatted and that parameter set to
zero. All that remains is to decide on a heuristic used tacséfe parameter to be optimised in each
step. In this study, we adopt the heuristic chosen by Sheaadeleerthi, in which the parameter

having the steepest gradient is selected in each iteraftomoptimisation proceeds using two nested
loops, in the inner loop, only active parameters are comsdlelf no further progress can be made
by optimising active parameters, the search is extendedremnpeters that are currently set to zero.
An optimisation strategy based on scaled conjugate gradistent [27] has also be found to be
effective.

3 Results

The proposed sparse multinomial logistic regression ntethocorporating Bayesian regularisation
using a Laplace prior (SBMLR) was evaluated over a suite df-kewn benchmark datasets,

against sparse multinomial logistic regression with figtgHcross-validation based optimisation of
the regularisation parameter using a simple line searchLf&MTable 1 shows the test error rate
and cross-entropy statistics for SMLR and SBMLR methods twese datasets. Clearly, there is
little reason to prefer either model over the other in terrhgemeralisation performance, as neither
consistently dominates the other, either in terms of emte pr cross-entropy. Table 1 also shows
that the Bayesian regularisation scheme results in modétsanslightly higher degree of sparsity

(i.e. the proportion of weights pruned from the model). Hoerethe most striking aspect of the

comparison is that the Bayesian regularisation schemepisalyy around two orders of magnitude

faster than the cross-validation based approach, with SBMing approximately five times faster

in the worst caseGOVTYPE).

3.1 The Value of Probabilistic Classification

Probabilistic classifiers, i.e. those that providingeaposterioriestimate of the probability of class
membership, can be used in minimum risk classification,giamappropriate loss matrix to account
for the relative costs of different types of error. Probasit classifiers allow rejection thresholds
to be set in a straight-forward manner. This is particuladeful in a medical setting, where it may
be prudent to refer a patient for further tests if the diagmdas uncertain. Finally, the output of



Table 1: Evaluation of linear sparse multinomial logistegression methods over a set of nine
benchmark datasets. The best results for each statistghawen in bold. The final column shows
the logarithm of the ratio of the training times for the SMLRdaSBMLR, such that a value of 2

would indicate that SBMLR is 100 times faster than SMLR foiigeg benchmark dataset.

Benchmark Error Rate Cross Entropy Sparsity log ;SMLR
SBMLR | SMLR | SBMLR | SMLR | SBMLR | SMLR SBMLR
Covtype 0.4051 | 0.4041| 0.9590 | 0.9733| 0.4312 | 0.3069 0.6965
Crabs 0.0350 | 0.0500| 0.1075 | 0.0891| 0.2708 | 0.0635 2.7949
Glass 0.3318 | 0.3224| 0.9398 | 0.9912| 0.4400 | 0.4700 1.9445
Iris 0.0267 | 0.0267 | 0.0792 | 0.0867 | 0.4067 | 0.4067 1.9802
Isolet 0.0475 | 0.0513| 0.1858 | 0.2641| 0.9311 | 0.8598 1.3110
Satimage 0.1610 | 0.1600| 0.3717 | 0.3708 | 0.3694 | 0.2747 1.3083
Viruses 0.0328 | 0.0328| 0.1670 | 0.1168| 0.8118 | 0.7632 2.1118
Waveform 0.1290 | 0.1302| 0.3124 | 0.3131| 0.3712 | 0.3939 1.8133
Wine 0.0225 | 0.0281| 0.0827 | 0.0825| 0.6071 | 0.5524 2.5541

a probabilistic classifier can be adjustafter training to compensate for a difference between the
relative class frequencies in the training set and thoserabd in operation. Saerens [4] provides
a simple expectation-maximisation (EM) based proceduree$timating unknown operationakt
priori probabilities from the output of a probabilistic classifierf. [28]). Letp; (C;) represent the
a-priori probability of classC; in the training set ang, (C;|x™) represent the raw output of the
classifier for thent" pattern of the test data (representing operational camdi}i The operational
a-priori probabilities,p, (C;) can then be updated iteratively via

() (s
Ll
)

c ((,s W n
55 i wsla)

beginning withpéo) (C;) = p:(C;). Note that the labels of the test examples are not required fo
this procedure. The adjusted estimatesgiosteriori probability are then given by the first part
of equation (6). The training and validation sets of @@/TYPE benchmark have been artificially
balanced, by random sampling, so that each class is repegsley the same number of examples.
The test set consists of the unused patterns, and so thetaspisori probabilities are both highly
disparate and very different from the training sepriori probabilities. Figure 1 and Table 2 sum-
marise the results obtained using the raw and correctedutsu a linear SBMLR model on this
dataset, clearly demonstrating a key advantage of prabtibitiassifiers over purely discriminative
methods, for example the support vector machine (note time gsocedure could be applied to the
SMLR model with similar results).

oD (wila) = and i) = 3 S wla"),  (©)
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Il training sef
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Table 2: Error rate and average cross- gm
entropy score for linear SBMLR models of the So2
COVTYPE benchmark, using the raw and cor- i
rected outputs. 01 I I I I |
[ Statisic | Raw  Corrected | R R E
Error Rate 40.51% 28.57%

Cross-Entropy | 0.9590 0.6567

Figure 1. Training set, test set and esti-
mateda-priori probabilities for theCOVTYPE
benchmark.



4 Relationship to Existing Work

The sparsity inducing Laplace density has been utilizediiposly in [15, 25, 26,29-31] and
emerges as the marginal of a scale-mixture-of-Gaussiargathe corresponding prior is an Expo-
nential such that

/Nw(o,r)a(y)m - %exp(foz|w|)

where&; () is an Exponential distribution over with parametery anda = /7. In [29] this
hierarchical representation of the Laplace prior is utilzo develop an EM style sparse binomial
probit regression algorithm. The hyper-parametés selected via cross-validation but in an attempt
to circumvent this requirement a Jeffreys prior is placed-@nd is used to replace the exponential
distribution in the above integral. This yields an improparameter free prior distribution over
w which removes the explicit requirement to perform any cresidation. However, the method
developed in [29] is restricted to binary classification Aad compute scaling(d®) which prohibits

its use on moderately high-dimensional problems.

Likewise in [13] the RVM employs a similar scale-mixture tbe prior where now the Exponential
distribution is replaced by a Gamma distribution whose rimaigyields a Student prior distribution.
No attempt is made to estimate the associated hyper-pagesraid these are typically set to zero
producing, as in [29], a sparsity inducing improper prios With [29] the original scaling of [13] is,
at worst,0(d?), though more efficient methods have been developed in [1dlvedder the analysis
holds only for a binary classifier and it would be non-trivialextend this to the multi-class domain.

A similar multinomial logistic regression model to the on@posed in this paper is employed in
[26] where the algorithm is applied to large scale clasdificeproblems and yet they, as with [25],
have to resort to cross-validation in obtaining a value ffier hyper-parameters of the Laplace prior.

5 Summary

In this paper we have demonstrated that the regularisaticeinpeter used in sparse multinomial lo-
gistic regression using a Laplace prior can be integratéauwalytically, giving similar performance
in terms of generalisation as is obtained using extensivesevalidation based model selection, but
at a greatly reduced computational expense. It is intergsti note that the SBMLR implements a
strategy that is exactly the opposite of the relevance vectzhine (RVM) [13], in that it integrates
over the hyper-parameter and optimises the weights, réttharmarginalising the model parameters
and optimising the hyper-parameters. It seems reasonalsleggest that this approach is feasible
in the case of the Laplace prior as the pruning action of thisr gnsures that values of all of the
weights are strongly determined by the data misfit term. Ailainstrategy has already proved ef-
fective in cancer classification based on gene expressioroarray data in a binomial setting [32],
and we plan to extend this work to multi-class cancer clasgitin in the near future.
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