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Abstract— The generalised linear model (GLM) is the stan-
dard approach in classical statistics for regression tasks where
it is appropriate to measure the data misfit using a likelihood
drawn from the exponential family of distributions. In this
paper, we apply the kernel trick to give a non-linear variant
of the GLM, the generalised kernel machine (GKM), in which
a regularised GLM is constructed in a fixed feature space
implicitly defined by a Mercer kernel. The MATLAB symbolic
maths toolbox is used to automatically create a suite of gener-
alised kernel machines, including methods for automated model
selection based on approximate leave-one-out cross-validation.
In doing so, we provide a common framework encompassing
a wide range of existing and novel kernel learning methods,
and highlight their connections with earlier techniques from
classical statistics. Examples including kernel ridge regression,
kernel logistic regression and kernel Poisson regression are
given to demonstrate the flexibility and utility of the generalised
kernel machine.

I. GENERALISED L INEAR MODELS

Assume we are given dataD = {(xi, yi)}ℓ

i=1, where
xi ∈ X ⊂ R

d represents a vector of input variables
and yi ∈ R represent the corresponding responses. Let
y = (y1, y2, . . . , yℓ) represent the vector of responses, which
we will assume is a realisation of a random variable,Y ,
the components of which are identically and independently
distributed (i.i.d.), with means given by the vectorµ =
(µ1, µ2, . . . , µℓ). The aim of regression is to estimate the
conditional mean of the response,µi, as a function of the
covariates,xi for i = 1, 2, . . . , ℓ. A generalised linear
model [22, 28] consists of three components: First a random
component, which describes the conditional distribution of
the responses, with mean vectorE[Y ] = µ. For example,
assuming the responses are normally distributed with com-
mon variance,σ2, we have

Y ∼ N (µ, σ2I).

Secondly, the systematic component (indirectly) describes
relationship between the covariates and the mean of the
random component, through a vector of latent variables,
η = (η1, η2, . . . , ηℓ), in this case,

η = Xβ (1)

where the rows of the design matrixX = [xi]
ℓ

i=1 are
given by the covariate vectors andβ = (β1, β2, . . . , βℓ)
is the vector of model parameters. Lastly, a monotonic
link function, g(·), that relates the systematic and random
components, such that

ηi = g(µi). (2)
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A. The Random Component

The generalised linear model extends the standard least-
squares linear regression technique to allow the conditional
distribution of the responses to be given by any member of
exponential family. The exponential family consists of all
distributions of the form,

f(y; θ, φ) = exp {[yθ − b(θ)]/a(φ) + c(y, φ)} (3)

for some functionsa(·), b(·) and c(·), where θ and φ are
parameters of the distribution. Many of the distributions
commonly encountered in statistical modelling fall withinthe
exponential family. For example, in the case of the normal
distribution

f(y; θ, φ) =
1√

2πσ2
exp

{

− (y − µ)2

2σ2

}

, (4)

= exp
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,

by inspection we find that it is a member of the exponential
family whereθ = µ, φ = σ2, a(φ) = φ, b(θ) = θ2/2 and

c(y, φ) = −1

2

[

y2

σ2
+ log

{

2πσ2
}

]

.

It can be shown that the mean of the distribution is governed
solely by thecanonicalparameter,θ, whereas the variance
is governed by bothθ and thedispersionparameter,φ. The
log-likelihood as a function ofθ andφ, given the observed
responsesy for a distribution from the exponential family
can be written as

l(θ, φ; y) = [yθ − b(θ)]/a(φ) + c(y, φ). (5)

with partial derivatives

∂l

∂θ
= [y − b′(θ)] /a(φ) and

∂2l

∂θ2
= −b′′(θ)/a(φ). (6)

The mean can be deduced from the relation

E

[

∂l

∂θ

]

= 0. =⇒ [µ − b′(θ)]/a(φ) = 0,

such that
E[Y ] = µ = b′(θ). (7)

Similarly, noting that

E

[

∂2l

∂θ2

]

+ E

[

∂l

∂θ

]2

= 0,

we find that
var(Y )

a2(φ)
=

b′′(θ)

a(φ)
=⇒ var(Y ) = b′′(θ)a(φ). (8)



As our primary interest lies in estimating the conditional
mean of the responses, the dispersion parameter,φ, is often
treated as a nuisance parameter, and the emphasis is placed
on estimatingθ as a function of the covariates.

B. The Link Function

The main function of the link is to constrain the estimate
of the conditional mean to lie within reasonable bounds for
the particular member of the exponential family concerned,
such that the domain of the link coincides exactly with the
range of the mean of the distribution. The mean of normally
distributed data is unconstrained, and so a linear link is
appropriate,

g(µ) = µ. (9)

For Binomial responses, the conditional mean lies in the
range(0, 1), and so a logit link,

g(µ) = logit(µ) = log

{

µ

1 − µ

}

, (10)

is suitable. The link function such thatθi = ηi, is known as
the canonical link, where

ηi = g(µi) =⇒ ηi = g(b′(ηi)) =⇒ g−1(ηi) = b′(ηi).

The use of the canonical link simplifies the optimisation
procedure followed in fitting a generalised linear model. The
canonical link also has many desirable statistical properties,
for instanceηi becomes the sufficient statistic for the re-
sponse distribution, however the choice of link is essentially
arbitrary.

C. Parameter Estimation

Generalised linear models can be fitted to the data via
a maximum likelihood approach, via the Newton-Raphson
process. The partial derivative of the log-likelihood of the
ith observation, with respect to the output of the systematic
component,ηi, is given by

∂li
∂ηi

=
∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

.

b′(θi) = µi =⇒ ∂µi

∂θi

= b′′(θi)

∂li
∂ηi

=
[yi − µi]

a(φ)

1

b′′(θ)

∂µi

∂ηi

where∂µi/∂ηi is simply the local gradient of the inverse link
function, more commonly known as theactivation function
in the neural networks literature. In the case of the canonical
link, the partial derivative can be considerably simplified,
noting that

θi = ηi =⇒ µi = b′(ηi) =⇒ ∂µi

∂ηi

= b′′(ηi)

we obtain

∂li
∂ηi

=
[yi − µi]

a(φ)
=⇒ ∂li

∂βj

=
[yi − µi]xij

a(φ)
. (11)

Again assuming the canonical link, the second order partial
derivatives, with respect to the output of the systematic
component, are given by

∂2li
∂η2

i

=
−1

a(φ)

∂µi

∂ηi

= −b′′(ηi)

a(φ)
,

and those with respect to the model parameters,β, by

∂2li
∂βj∂βk

=
b′′(ηi)xijxik

a(φ)
. (12)

The relative ease of evaluating the gradient information
required to fit the generalised linear model is a strong
argument in favour of the canonical link. Assuming that the
data,D, represent an independent and identically distributed
sample, the negative log-likelihood is given by

L = −
ℓ

∑

i=1

li ∝
ℓ

∑

i=1

[yiθi − b(θ)] (13)

Note that since we are interested in minimisingL with
respect toβ, we can neglect any additive terms not involving
θ, such asc(y, φ) or multiplicative scaling, e.g.1/a(φ).
Given the gradient vector ofL, with respect toβ,

∆ =

(

∂L
∂βi

)ℓ

i=1

= XT [y − µ] , (14)

and the Hessian matrix,

A =

[

∂2L

∂βi∂βj

]d

i,j=1

= −XT WX, (15)

where W = diag(b′′(η1), b
′′(η2), . . . , b

′′(ηℓ)). Newton’s
method updates the model parameters according to the fol-
lowing rule:

βt+1 = βt − A−1
∆. (16)

Substituting (14) and (15) into (16) and re-arranging gives,

XT WXβt+1 = XT WX − XT [y − µ].

Finally, noting thatXβt = η and defining

z = η − W−1[y − µ], (17)

we obtain

XT WXβt+1 = XT Wz. (18)

These are essentially the normal equations for a weighted
least-squares problem, with weightsW and modified targets,
z. The parameter estimation procedure proceeds iteratively,
alternating between updates of the model parameters,β, via
equation (18), and updates ofη, µ andz, via equations (1),
(2) and (17) respectively. Hence the algorithm is also known
as Iteratively Re-Weighted Least-Squares (IRWLS) [26].



II. GENERALISED KERNEL MACHINES

A non-linear variant of the generalised linear model can
be derived in an elegant manner via the “kernel trick”, where
the systematic component is constructed in a feature space,
F , given by a fixed transformation of the input space, i.e.
ϕ(x) : X → F . The systematic component is then given by

ηi = β · ϕ(xi) + b, (19)

note that we have introduced an explicit bias term,b. How-
ever, rather than specify the fixed transformation directly, it is
implicitly defined by a Mercer kernel [23],K : X ×X → R,
which gives the inner product between the images of the
data in the feature space, i.e.K(x,x′) = ϕ(x) ·ϕ(x′). The
interpretation of the kernel as performing an inner product
in a fixed feature space is valid for any kernel for which the
Gram matrix,

K = [kij = K(xi,xj ]
ℓ

i,j=1 ,

is positive definite [4]. A common kernel in practical ap-
plications is the radial basis function (RBF) or squared
exponential kernel,

K(x,x′) = exp
{

κ‖x − x′‖2
}

(20)

whereκ is akernel parametergoverning the sensitivity of the
kernel. In this case, the transformationϕ maps the data onto
the positive orthant of an infinite dimensional unit hyper-
sphere. As the feature space,F , is of infinite dimension, the
systematic component of the generalised kernel model (19)
becomes a universal approximator, capable of representing
arbitrary relationships between the mean of the response
distributions and the explanatory variables [24]. For an al-
ternative treatment of kernel methods and exponential family
distributions, from the perspective of machine learning rather
than classical statistics, see Canu and Smola [8].

A. Parameter Estimation

Assuming the canonical link, such thatηi = θi, the
primal model parameters,β are determined using penalised
maximum-likelihood, via minimisation of the criterion

L =

ℓ
∑

i=1

[yiηi − b(η)] +
λ

2
‖β‖2 (21)

where λ is a regularisation parameter [37] controlling the
bias-variance trade-off [15]. Fortunately, this represents a
convex optimisation problem [7], with a unique global
minimum. The representer theorem [19] indicates that the
solution of this optimisation problem can be expressed as an
expansion over the data of the form

β =

ℓ
∑

j=1

αjϕ(xj) =⇒ ηi =

ℓ
∑

i=1

αiK(xj ,xi) + b,

where α = (α1, α2, . . . , αℓ) is a vector of dual model
parameters. Again an iteratively re-weighted least-squares
(IRWLS) procedure can be used. Using the method of

Lagrange multipliers, the minimiser of the weighted least-
squares problem is given by the solution of a simple system
of linear equations,

[

K + λW−1
1

1
T 0

] [

α

b

]

=

[

z

0

]

, (22)

and the updates ofW and z are exactly as before. This
system of linear equations can be solved efficiently using the
Cholesky decomposition [16, 35] of the matrixK +λW−1.

B. Model Selection

The generalised kernel machine introduces a small number
of additional hyper-parameters, that must also be estimated
from the data, the regularisation parameter,λ, and any kernel
parameters, e.g.κ. The values of these hyper-parameters can
be determined by minimising a cross-validation [34] estimate
of the negative log-likelihood. Thek-fold cross-validation
strategy partitions the available data intok disjoint subsets.
In each iteration, a model is constructed using a different
combination ofk−1 subsets, the remaining subset being used
for performance estimation. The average of the performance
estimates for thek models is thek-fold cross-validation
estimate. The most extreme form of cross-validation, where
each subset consists of a single pattern, is known as leave-
one-out cross-validation [20], which has been shown to
provide an almost unbiased estimate of performance on
unseen data [21].

Leave-one-out cross-validation is computationally expen-
sive, and so is generally impractical for use with all but the
smallest datasets. However, in the case of least-squares linear
regression, the leave-one-out procedure can be performed
analytically as a by-product of fitting a model on the entire
dataset (e.g. [1, 14, 38]). These methods can be adapted
to provide an approximate leave-one-out cross-validation
method for generalised kernel models, as they are based
on iteratively re-weighted least-squares. LetC represent the
matrix on the left hand side of the linear system (22),

C =

[

K + λW−1
1

1
T 0

]

Furthermore, let us also assume thatW and z remain ap-
proximately constant during each iteration of the leave-one-
out procedure. It is then relatively straight-forward to show
that [9, 10] that the output of the systematic component of a
generalised kernel machine, for theith training pattern in the
ith fold of the leave-one-out process, can be approximated
by,

η
(−i)
i ≈ zi −

αi

C−1
ii

. (23)

This provides the basis for an efficient leave-one-out cross-
validation estimate of the test likelihood, which can be used
for model selection. The model selection criterion can be
optimised using the Nelder-Mead simplex algorithm [27],
or gradient based methods, e.g. scaled conjugate gradient
descent [40] (c.f. [6, 13]). Model selection methods based on
similar ideas have also been developed for the generalised
linear models (e.g. [17, 22]).



III. GENERALISED KERNEL MACHINE TOOLBOX

We have implemented an object-oriented MATLAB tool-
box1 implementing the generalised kernel machine. The
toolbox provides:

• A number of simple kernel objects suitable for many ba-
sic applications,@linear , @polynomial and@rbf .

• The base class,@gkm, representing the functionality
common to all generalised kernel machines.

• Concrete subclasses used to implement the examples
detailed in this section, namely@krr - kernel ridge re-
gression,@klr - kernel logistic regression and@kpor
- kernel Poisson regression.

• Optimisation objects,@simplex and@scg, providing
automatic model selection.

• An object representing a model selection criterion,
@aloo , which corresponds to the approximate leave-
one-out estimate of the test likelihood, as described in
Section II-B.

The design of the toolbox is quite flexible and may be
extended at a later date to provide additional functionality.
The toolbox is also able to automatically generate new
instances of the generalised kernel machine, using the MAT-
LAB symbolic math toolbox to evaluate the loss function,
the canonical link and the weighting function used in the
iteratively re-weighted least squares procedure, from a string
describing the canonical function,b(·). The fix method can
the be used to save the new form of GKM to disk as a
new concrete subclass of@gkm. A web-server is currently
under construction to produce bespoke GKM classes for
users without access to the symbolic math toolbox.

A. Example: Kernel Ridge Regression

A variety of kernel learning algorithms are exactly analo-
gous to a generalised kernel machine taking for the random
component, a homoscedastic Gaussian distribution (5). Not-
ing that in this case,b(θ) = θ2/2, and therefore the canonical
link is the identity function,g(µ) = b′(η) = η. Furthermore,
b′′(θ) = 1, such that

W = diag(b′′(η1), b
′′(η2), . . . , b

′′(ηℓ)) = I.

Similarly, asη = µ, the modified targets are given by

z = η − W−1[y − µ] = y.

Therefore the system of linear equations giving the model
parameters,α, simplifies to give,

[

K + λI 1

1
T 0

] [

α

b

]

=

[

y

0

]

.

This is identical to the system of linear equations to be solved
in fitting a kernel ridge regression (KRR) model [32], or
equivalently the least-squares support vector machine (LS-
SVM) [35, 36], regularisation network (RN) [29] and as Fish-
ers’ linear discriminant analysis is equivalent to least-squares

1We will shortly make the toolbox freely available under the terms of the
GNU general public license.
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Fig. 1. Kernel ridge regression (KRR) model of Silverman’s motorcycle
benchmark dataset [33].

regression to the class labels (e.g. [41]), the kernel Fisher
discriminant (KFD) classifier [25]. A Bayesian treatment
of this type of generalised kernel machine is equivalent to
Gaussian process regression [30].

A new class,@krr , implementing the kernel ridge regres-
sion machine can be added to the MATLAB toolbox, using
the following command:

fix(gkm(’acronym’, ’krr’, ...
’name’, ’kernel ridge regression’, ...
’canonical’, ’0.5 * etaˆ2’));

Here, we have specified an acronym, used to specify the
name of the new class, and the full name of the model, for
the purpose of displaying the model. The kernel ridge regres-
sion model was then used to model Silverman’s motorcycle
benchmark dataset [33], using a radial basis function kernel,
as shown in Figure 1.

B. Example: Kernel Logistic Regression

Generalised linear models, and by extension generalised
kernel machines can also be applied to statistical pattern
recognition, where the target,yi, indicates whether theith

pattern belongs to the positive (yi = 1) or negative class
(yi = 0) respectively. In this case the responses can be
viewed as realisations of a series of Bernoulli trials, such
that

f(yi;πi) = πyi

i (1 − πi)
1−yi ,

where πi represents the probability that theith example
belongs to the positive class (conditioned on the input vector,
xi). The Bernoulli distribution can be written as a one-
parameter member of the exponential family as

f(y; θ) = exp {yθ − log [1 + exp (θ)]} ,

where

π =
exp{θ}

1 + exp{θ} .

In this case, the Bernoulli distribution is defined by the
functions,a(φ) = 1, b(θ) = log[1+exp(θ)] andc(yi;φ) = 0.
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Fig. 2. Kernel logistic regression (KLR) model of Ripley’s synthetic
benchmark dataset [31].

Note that the dispersion parameter,φ, is redundant as the
Bernoulli distribution is completely specified by the mean,
π. If we take the canonical link, such thatθ = η, we have
that

η = g(π) = logit(π) = log

{

π

1 + π

}

.

As usual, the parameters of the model can be estimated by
iteratively re-weighted least-squares, where

W = diag(π1(1 − π1), π2(1 − π2), . . . , πℓ(1 − πℓ)),

and z is given by (17). The resulting model is known as
kernel logistic regression (KLR) [11, 18]. The closely related
kernel probit regression KPR method [5, 9] can be viewed as
a GKM with a Bernoulli random component and the non-
canonical probit link. A Bayesian treatment of this form
of generalised kernel machine gives rise to the Gaussian
process classifier [30, 39]. A new class implementing the
kernel logistic regression algorithm can be saved to disk
using the following command,

fix(gkm(’acronym’, ’klr’, ...
’name’, ’kernel logistic regression’, ...
’canonical’, ’log(1+exp(eta))’));

Figure 2 shows the results obtained using kernel logistic
regression for Ripley’s synthetic benchmark dataset [31].

C. Example: Kernel Poisson Regression

For the final example, we chose a more unusual model that
does not appear to have an existing kernel variant, namely
Poisson regression. The Poisson distribution arises naturally
as the distribution of a random variable recording the number
of occurrences of a rare event with a constant average rate,
over a given period or population [3]. For example, Andersen
[2] considers the incidence of lung cancer in the populations
of four Danish cities, namely Fredricia, Horsens, Kolding
and Vejla, within six different age groups (40− 54, 55− 59,
60− 64, 65− 69, 70− 74 and> 75). We therefore construct
a generalised kernel machine, where the random component
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Fig. 3. Kernel Poisson regression (KPoR) model of Andersen’slung cancer
benchmark dataset.

is given by a Poisson distribution,

f(yi;µi) =
exp{−µi}µyi

i

y!

such that the canonical function isb(θ) = exp{θ}, and so
we obtain a logarithmic canonical link,

ηi = log{µi}
A class implementing kernel Poisson regression can be saved
to disk using the following command:

fix(gkm(’acronym’, ’kpor’, ...
’name’, ’kernel Poisson regression’, ...
’canonical’, ’exp(eta)’));

The kernel Poisson regression model is then applied to An-
dersen’s lung cancer dataset, with results shown in Figure 3.
Here we adopt an inhomogeneous quadratic kernel,

K(x,x′) = (x · x′ + c)
2

wherec is a kernel parameter controlling the relative impor-
tance of first and second order terms. The model has four
input features, the first represents the mid-point of the age
range, and three binary variables that are set to one to indicate
the city is Fredricia, Horsens or Kolding respectively (Vejla
is indicated by all three of these inputs being set to zero).

D. Agnostic Learning versus Prior Knowledge Challenge

The examples given in this paper are intentionally small-
scale, for the purpose of illustration, however, the toolbox
has also been used to implement competitive solutions for
the prior knowledge track of the IJCNN-2007 Agnostic
Learning versus Prior Knowledge Challenge2, using much
larger datasets (current placings:ADA1st, GINA = 1st, HIVA
1st, NOVA1st, SYLVA= 3rd). These examples are described
in detail in a companion paper [12].

2http://www.agnostic.inf.ethz.ch/



IV. CONCLUSIONS

In this paper, we have described a common framework,
uniting a wide variety of existing and novel kernel learning
methods, viewing each as a non-linear variant of a particular
generalised linear model based on the “kernel trick”. This
framework has been implemented in the form of a MATLAB
toolbox supporting the creation of novel generalised kernel
machines, with fully automated training and model selection
procedures. The toolbox has also been used successfully to
create methods for kernel survival analysis and modelling
of extreme values. In relating this family of kernel learning
methods to generalised linear models, we also inherit a
vast body of theory, including deviance and goodness-of-
fit, analysis of variance, asymptotic distributions for pa-
rameter estimates and confidence intervals on predictions.
These ideas potentially have a great impact in the practical
application of kernel learning methods, but are beyond the
scope of this paper.
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